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Deciding with Binary Decision Trees

Contents. This part of the course is about a special case of supervised
learning: the supervised learning of binary decision trees.

» \We state the problem by defining labeled data, a family of functions,
a regularizer and a loss function

» We prove that the problem is hard to solve (technically: Np-hard), by
relating it to the exact cover by 3-sets problem.
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Deciding with Binary Decision Trees

Data

We consider binary attributes. More specifically, we consider some finite,
non-empty set V, called the set of attributes, and labeled data
T = (S, X, z,y) such that X = {0,1}V.

Hence, z: S — {0,1}V and y: S — {0,1}.
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Deciding with Binary Decision Trees

Definition. A tuple (V,Y, D, D’ d*, E,§,v,y) is called a V-variate
Y-valued binary decision tree (BDT) iff the following conditions hold:
1. V # 0 is finite (set of variables)

2. Y # () is finite (set of values)

3. (DUD',E) is a finite, non-empty
directed binary tree with root d*

4. every d € D' is a leaf

5 6: E—{0,1}

6. every d € D has precisely two
out-edges, e = (d,d’), e = (d,d"),
such that §(e) =0 and d§(¢') =1

7.v: D=V

.y: D' =Y

(e}
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diO o] du O
Definition. For any BDT (V,Y, D, D’,d*, E,§,v,y), any d € D and any

j €{0,1}, we let d; € DU D’ the unique node such that
e=(d,d;;) € Eand §(e) = j.
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Deciding with Binary Decision Trees

Definition. For any BDT 6 = (V,Y, D, D’,d*, E,,v,y) and any
d e DUD, the tuple 8[d] = (V,Y, Dy, D}, d, E', 6", v",y/) is called the
binary decision subtree of 6 rooted at d iff

» (DyU D}, E') is the subtree of (D U D', E) rooted at d

» §', v' and y are the restrictions of §, v and y to the subsets Dy, D)
and E’

Lemma. For any BDT 6 = (V,Y, D, D', d*, E,§,v,y) and any
d € DU D', the binary decision subtree 0[d] is itself a V-variate Y-valued
BDT.
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Deciding with Binary Decision Trees

Definition. For any BDT 6 = (V,Y, D, D', d*, E, d,v,y), the function
defined by 6 is the f5 : {0,1}V — Y such that Vz € {0,1}V:
y(d*) ifD=0
fo(x) = f9[dio](x) if D#DAzyq) =0
fe[dm(x) if D#DAxyg) =1
B {y(d*) if D=0

(1- xv(d*))f@[djo](x) + %(d*)fo[dzl](ff) otherwise

Note. The set © of V-variate Y = {0, 1}-valued BDTs can be identified
with a subset of V-variate DNFs.
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Deciding with Binary Decision Trees

Regularization

In order to quantify the complexity of BDTs, we consider the following
regularizer.

Definition. For any BDT 6 = (V,Y, D, D', d*, E,d,v,y), the depth of 6
is the R(#) € N such that

0 if D=0
R(0) = {1+maX{R(e[dIO]),R(e[d@])} otherwise - @
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Deciding with Binary Decision Trees

Loss function

We consider the 0/1-loss L, i.e.

0 =19
VreRVge{0,1}: Lirng=4{ 7.
1 otherwise
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Deciding with Binary Decision Trees

Definition. For any \ € R, the instance of the supervised learning
problem of BDTs with respect to T, L, R and A has the form

min  AR(0) + ﬁ Z L(fo(xs),ys) (3)

[ISC)
seS

Definition. For any m € N, the bounded depth BDT problem w.r.t. T
and m is to decide whether there exists a BDT
0 =(V,Y,D,D' d* E,b v,y’) such that
R(0) <m (4)
VseS:  folxs) =ys - (5)
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Deciding with Binary Decision Trees

Next, we will reduce the hard-to-solve (technically: Np-hard) exact cover
by 3-sets problem to the bounded depth BDT problem, thereby showing
that the latter problem is hard to solve (NP-hard) as well. The reduction is
by Haussler (1988).

Definition. For any set S, a cover ¥ of S is called exact iff the elements
of ¥ are pairwise disjoint.

Definition. Let S be any set, and let ) ¢ ¥ C 29,

Deciding whether there exists a ¥’ C ¥ such that ¥/ is an exact cover of
S is called the instance of the exact cover problem w.r.t. S and .

Additionally, if |\S| is an integer multiple of three and any U € ¥ is such
that |U| = 3, the instance of the exact cover problem w.r.t. S and X is
also called the instance of the exact cover by 3-sets problem with
respect to S and X.
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Deciding with Binary Decision Trees

Proof. For any instance (S, X) of the exact cover by 3-sets problem and
the n € N such that |.S’| = 3n, we construct the instance of the
m-bounded depth BDT problem such that

> V=Y
> S=5u{0}
» 2:S5 —{0,1}* such that 2o = 0 and

1 ifsco

VseS'VoeX: uz4o)= i
0 otherwise

» y:S — {0,1} such that yp =0 and Vs € S": y, = 1.
> m=n

We show that the instance the exact cover problem has a solution iff the
instance of the bounded depth BDT problem has a solution.
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Deciding with Binary Decision Trees

(=) Let ¥’ C ¥ a solution to the instance of the exact cover problem.

Consider any order on ¥’ and the bijection ¢’ : [n] — X/ induced by this
order.

We show that the BDT 6 depicted below solves the instance of the
bounded depth BDT problem.
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Deciding with Binary Decision Trees

The BDT satisfies R(#) = m.
The BDT decides the labeled data correctly because

» fo(zo) =0=1yo
» At each of the m interior nodes, three additional elements of S’ are

mapped to 1. Thus, all 3m many elements s € S” are mapped to 1.

ThatisVs € S": fo(zs) =1 = ys.
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Deciding with Binary Decision Trees

(<) Let 0= (V,Y,D,D’,d*, E,0,0,y’) a BDT that solves the instance of
the bounded depth BDT problem.

W.l.o.g., we assume, for any interior node d € D, that d; is a leaf and
y'(dy1) =1.
Hence, 6 is of the form depicted below.
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Deciding with Binary Decision Trees

Therefore:
1 if 35 € [N]: ) =1
Vo€ X: fe<x)={ 3 € IN: (o) (7)
0 otherwise
Thus,
1 ifd7 € [N]: ;
VseS:  fo(zs) = I je_[ Jis€o; ) (8)
0 otherwise
by definition of z in (6).
Consequently,
N-1
Uo=5", (9)
j=0

by definition of y such that Vs € S': y, = 1.

16/18



Deciding with Binary Decision Trees

Moreover, N = m, because

© N-1 N-1 —1 @
3m =S| = Uojg loj| = 3=3N <3m .
=0 =0 =0
Therefore:
v e (BN: opnao = (10)
Thus,
N-1
U o
=0

is a solution to the instance of the exact cover by 3-sets problem defined

by (5’,%), by (9) and (10).
O
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Deciding with Binary Decision Trees

Summary:
» BDTs can be identified with a subset of DNFs.
» Supervised learning of BDTs is hard. More specifically, the NP-hard
exact cover by 3-sets problem is reducible to the bounded depth BDT
problem by construction of Haussler data.

Further reading: Readers who are not familiar with the exact cover by
3-sets problem or the set cover problem will find proofs of their
NP-hardness in Appendicies A.1-A.4 of the lecture notes.
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