
Chapter 6

Supervised structured learning

6.1 Intuition

Even in the most general learning and inference problem w.r.t. constrained data (S,X, x,Y) we
have considered so far, attributes xs ∈ X are defined for single elements s ∈ S only, and solutions
are such that decisions ys, ys′ ∈ {0, 1} for distinct s, s′ ∈ S are independent unless they are tied by
constraints of a feasible set Y ⊂ {0, 1}S .

This mathematical abstraction of learning is too restrictive for certain applications. For example,
consider a task where we are given a digital image and need to decide for every pixel s ∈ S, by the
contents of the image around that pixel, whether the pixel is of interest (ys = 1) or not of interest
(ys = 0). Typically, decisions at neighboring pixels s, s′ ∈ S are more likely to be equal (ys = ys′)
than unequal (ys 6= ys′), and we may wish to learn how this increased probability depends on the
contents of the image. None of the mathematical abstractions of learning we have considered so far
is sufficient to express this dependency.

In order to lift this restriction, we will now define a supervised learning problem as well as
an inference problem in which attributes are associated with subsets of S, and in which decisions
can be tied by probabilistic dependencies. Therefor, we will introduce a family H : Θ→ RX×Y of
functions that quantify by Hθ(x, y) how incompatible attributes x ∈ X are with a combination
of decisions y ∈ {0, 1}S . We will define supervised structured learning as a problem of finding
one function from this family. We will define structured inference as the problem of finding a
combination of decisions y ∈ {0, 1}S that minimizes Hθ(x, ·).

6.2 Definition

Definition 6 A triple (S, F,E) is called a factor graph with variable nodes S and factor nodes F
iff S ∩ F = ∅ and (S ∪ F,E) is a bipartite graph such that ∀e ∈ E ∃s ∈ S ∃f ∈ F : e = {s, f}.

For any factor node f ∈ F , we denote by Sf = {s ∈ S | {s, f} ∈ E} the set of those variable
nodes that are neighbors of f .

Definition 7 A tuple T = (S, F,E, {Xf}f∈F , x) is called unlabeled structured data iff (S, F,E) is
a factor graph, every set Xf is non-empty, called the attribute space of f , and x ∈

∏
f∈F Xf , where

the Cartesian product
∏
f∈F Xf is called the attribute space of T . A tuple (S, F,E, {Xf}f∈F , x, y) is

called labeled structured data iff (S, F,E, {Xf}f∈F , x) is unlabeled structured data, and y ∈ {0, 1}S .

Definition 8 For any labeled structured data T = (S, F,E, {Xf}f∈F , x, y), the attribute space
X =

∏
f∈F Xf , the set Y = {0, 1}S , any Θ 6= ∅ and family of functions H : Θ → RX×Y ,

any R : Θ → R+
0 , called a regularizer , any L : RY × Y → R+

0 , called a loss function, and any
λ ∈ R+

0 , called a regularization parameter , the instance of the supervised structured learning problem
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Figure 6.1: The factor graph with S = {0̄, 1̄, 2̄} and F = {0, 1, 2, 01, 12} depicted above makes
explicit that a function H : {0, 1}S → R factorizes according to H(y) = h0(y0̄) + h1(y1̄) + h2(y2̄) +
h01(y0̄, y1̄) + h12(y1̄, y2̄).

w.r.t. T,Θ, H,R,L and λ is defined as

inf
θ∈Θ

λR(θ) + L(Hθ(x, ·), y) (6.1)

Intuitively, Hθ is a function that quantifies by Hθ(x, y) how incompatible attributes x ∈ X are
with a combination of decisions y ∈ {0, 1}S . Consequently, Hθ(x, ·) is a functional that assigns an
incompatibility to every combination of decisions.

Definition 9 For any unlabeled structured data T = (S, F,E, {Xf}f∈F , x) and any Ĥ : X ×
{0, 1}S → R, the instance of the inference problem w.r.t. T and Ĥ is defined as

min
y∈{0,1}S

Ĥ(x, y) (6.2)

6.3 Conditional graphical models

6.3.1 Data

Throughout Section 6.3, we consider labeled data (S, F,E, {Xf}f∈F , x, y) and an attribute space
X =

∏
f∈F Xf such that, for every f ∈ F , there is an nf ∈ N and Xf = Rn(f).

6.3.2 Family of functions

Definition 10 For any factor graph G = (S, F,E), a function H : {0, 1}S → R is said to factorize
w.r.t. G iff, for every f ∈ F , there exists a function a function hf : {0, 1}Sf → R, called a factor of
H, such that

∀y ∈ {0, 1}S : H(y) =
∑
f∈F

hf (ySf ) . (6.3)

An example is shown in Fig. 6.1.

Definition 11 A tuple (S, F,E, {Xf}f∈F ,Θ, {hf}f∈F ) is called a conditional graphical model with
attribute space

∏
f∈F Xf = X and parameter space Θ iff (S, F,E) is a factor graph, Θ 6= ∅ and, for

every f ∈ F , Xf 6= ∅, called the attribute space of f , and hf : Θ→ RXf×{0,1}
Sf

, called a factor .

The H : Θ→ RX×{0,1}S defined below is called the energy function of the conditional graphical
model.

∀θ ∈ Θ ∀x ∈ X ∀y ∈ {0, 1}S : Hθ(x, y) =
∑
f∈F

hfθ(xf , ySf ) (6.4)

Throughout Section 6.3, we consider such a conditional graphical model. We make two additional
assumptions: Firstly, we assume that Θ is a finite-dimensional, real vector space, i.e., there exists
a finite, non-empty set J and Θ = RJ . Secondly, we assume that every function hf is linear in
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Θ, i.e., for every f ∈ F , there exists a ϕf : Xf × {0, 1}Sf → RJ such that for any xf ∈ Xf , any
ySf ∈ {0, 1}Sf and any θ ∈ Θ:

hfθ(xf , ySf ) = 〈θ, ϕf (xf , ySf )〉 (6.5)

For convenience, we define ξ : X × {0, 1}S → RJ such that for any x ∈ X and any y ∈ {0, 1}S :

ξ(x, y) =
∑
f∈F

ϕf (xf , ySf ) (6.6)

Thus, we obtain for any θ ∈ Θ, any x ∈ X and any y ∈ Y :

Hθ(x, y) =
∑
f∈F

hfθ(xf , ySf )

=
∑
f∈F

〈θ, ϕf (xf , ySf )〉

=

〈
θ,
∑
f∈F

ϕf (xf , ySf )

〉
= 〈θ, ξ(x, y)〉 (6.7)

6.3.3 Probabilistic model

Random Variables

• Let X be a random variable whose realization is an element x ∈ X of the attribute space.

• Let Y be a random variable whose realization is a combination of decisions y ∈ {0, 1}S

• For any j ∈ J , let Θj a random variable whose realization is a θj ∈ R

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

X

YΘj

j ∈ J

Factorization

• Firstly:

P (X ,Y,Θ) = P (Y | X ,Θ)P (X )
∏
j∈J

P (Θj) (6.8)

• Secondly:

P (Θ | X ,Y) =
P (X ,Y,Θ)

P (X ,Y)

=
P (Y | X ,Θ)P (X )

∏
j∈J P (Θj)

P (X ,Y)

∝ P (Y | X ,Θ)
∏
j∈J

P (Θj) (6.9)
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Forms

Definition 12 For any conditional graphical model, the partition function Z : X ×Θ→ R and
Gibbs distribution p : X × {0, 1}S ×Θ→ [0, 1] are defined by the forms

Z(x, θ) =
∑

y∈{0,1}S
e−Hθ(x,y) (6.10)

p(y, x, θ) =
1

Z(x, θ)
e−Hθ(x,y) (6.11)

We consider in (6.9) the Gibbs distribution of our conditional graphical model, i.e.

pY|X ,Θ(y, x, θ) =
1

Z(x, θ)
e−Hθ(x,y) . (6.12)

Moreover, we consider in (6.9) a σ ∈ R+ and, for every j ∈ J , the normal distribution

pΘj (θj) =
1

σ
√

2π
e−θ

2
j/2σ

2

. (6.13)

6.3.4 Learning problem

Lemma 6 Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

argmax
θ∈RJ

pΘ|X ,Y(θ, x, y)

is identical to the supervised structured learning problem w.r.t. L, R and λ such that

L(Hθ(x, ·), y) = Hθ(x, y) + lnZ(x, θ) (6.14)

= Hθ(x, y) + ln
∑

y′∈{0,1}S
e−Hθ(x,y′) (6.15)

= 〈θ, ξ(x, y)〉+ ln
∑

y′∈{0,1}S
e−〈θ,ξ(x,y

′)〉 (6.16)

R(θ) = ‖θ‖22 (6.17)

λ =
1

2σ2
(6.18)

Exercise 2 Prove Lemma 6.

Lemma 7 The first and second partial derivatives of the logarithm of the partition function have
the forms

∂

∂θj
lnZ =

1

Z(x, θ)

∑
y′∈{0,1}S

(−ξj(x, y′))e−〈θ,ξ(x,y
′)〉

= Ey′∼pY|X ,Θ(−ξj(x, y′)) (6.19)

∂2

∂θj ∂θk
lnZ = Ey′∼pY|X ,Θ(ξj(x, y

′)ξk(x, y′))− Ey′∼pY|X ,Θ(ξj(x, y
′))Ey′∼pY|X ,Θ(ξk(x, y′))

= COVy′∼pY|X ,Θ(ξj(x, y
′), ξk(x, y′)) (6.20)

Exercise 3 Prove Lemma 7.

Lemma 8 Supervised structured learning of a conditional graphical model is a convex optimization
problem.

Exercise 4 Prove Lemma 8 using (6.20).



6.3. CONDITIONAL GRAPHICAL MODELS 23

6.3.5 Inference problem

Lemma 9 Estimating maximally probable decisions y, given attributes x and parameters θ, i.e.

argmax
y∈{0,1}S

pY|X ,Θ(x, y, θ) (6.21)

is identical to the structured inference problem with Ĥ(x, y) = Hθ(x, y).

Exercise 5 Prove Lemma 9.
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