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Chapter 1

Introduction

1.1 Notation

We shall use the following notation:

• We write “iff” as shorthand for “if and only if”.

• For any finite set A, we denote by |A| the number of elements of A.

• For any set A, we denote by 2A the power set of A.

• For any set A and any m ∈ N, we denote by
(
A
m

)
the set of all m-elementary subsets of A,

i.e.
(
A
m

)
= {B ∈ 2A | |B| = m}.

• For any sets A,B, we denote by BA the set of all maps from A to B

• For any map f ∈ BA, any a ∈ A and any b ∈ B, we may write b = f(a) or b = fa instead of
(a, b) ∈ f
• Given any set J and, for any j ∈ J , a set Sj , we denote by

∏
j∈J Sj the Cartesian product of

the family {Sj}j∈J , i.e.

∏
j∈J

Sj =

f : J →
⋃
j∈J

Sj

∣∣∣∣∣∣∀j ∈ J : f(j) ∈ Sj

 (1.1)

• We denote by 〈·, ·〉 the standard inner product, and by ‖ · ‖ the Euclidean norm.

• For any m ∈ N, we define [m] = {0, . . . ,m− 1}.
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Chapter 2

Supervised learning

2.1 Intuition

Informally, supervised learning is the problem of finding in a family g : Θ→ Y X of functions, one
gθ : X → Y that minimizes a weighted sum of two objectives:

1. g deviates little from a finite set {(xs, ys)}s∈S of input-output-pairs

2. g has low complexity, as quantified by a function R : Θ→ R+
0

We note that the family g can have meaning beyond a mere parameterization of functions from
X to Y . For instance, Θ can be a set of forms, g the functions defined by these forms, and R the
length of forms. In that case, supervised learning is really an optimization problem over forms
of functions, and R penalizes the complexity of these forms. Moreover, g can be chosen so as to
constrain the set of functions from X to Y in the first place.

We concentrate exclusively on the special case where Y is finite. In fact, we concentrate on the
case where Y = {0, 1} in this chapter and reduce more general cases to this case in Chapter 4.

Moreover, we allow ourselves to take a detour by not optimizing over a family g : Θ→ {0, 1}X
directly but instead optimizing over a family f : Θ→ RX and defining g w.r.t. f via a function
L : R× {0, 1} → R+

0 , called a loss function, such that

∀θ ∈ Θ ∀x ∈ X : gθ(x) = argmin
ŷ∈{0,1}

L(fθ(x), ŷ) . (2.1)

2.2 Definition

Definition 1 For any S 6= ∅ finite, called a set of samples, any X 6= ∅, called an attribute space
and any x : S → X, the tuple (S,X, x) is called unlabeled data.

For any y : S → {0, 1}, given in addition and called a labeling , the tuple (S,X, x, y) is called
labeled data.

Definition 2 For any labeled data T = (S,X, x, y), any Θ 6= ∅ and family of functions f : Θ→ RX ,
any R : Θ → R+

0 , called a regularizer , any L : R × {0, 1} → R+
0 , called a loss function, and

any λ ∈ R+
0 , called a regularization parameter , the instance of the supervised learning problem

w.r.t. T,Θ, f, R, L and λ is defined as

inf
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (2.2)

Definition 3 For any unlabeled data T = (S,X, x), any f̂ : X → R and any L : R× {0, 1} → R+
0 ,

the instance of the inference problem w.r.t. T, f and L is defined as

min
y′∈{0,1}S

∑
s∈S

L(f̂(xs), y
′
s) (2.3)

7
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Lemma 1 The solutions to the inference problem are the y : S → {0, 1} such that

∀s ∈ S : ys ∈ argmin
ŷ∈{0,1}

L(f̂(xs), ŷ) . (2.4)

Moreover, if

f̂(X) ⊆ {0, 1} (2.5)

and

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) =

{
0 if r = ŷ

1 otherwise
(2.6)

then

∀s ∈ S : y′s = f̂(xs) . (2.7)

Proof Generally, we have

min
y∈{0,1}S

∑
s∈S

L(f̂(xs), ys) =
∑
s∈S

min
ys∈{0,1}

L(f̂(xs), ys) (2.8)

By (2.5), L(f̂(xs), f̂(xs)) is well-defined for any s ∈ S. By (2.6) and non-negativity of L, we
have

∀ys ∈ {0, 1} : L(f̂(xs), f̂(xs)) = 0 ≤ L(f̂(xs), ys) . (2.9)

Thus, ys = f̂(xs) is optimal for any s ∈ S.

We note that the exact supervised learning problem formalizes a philosophical principle known
as Ockham’s razor.



Chapter 3

Deciding

3.1 Linear functions

3.1.1 Data

Throughout Section 3.1, we consider real attributes. More specifically, we consider some finite set
V 6= ∅ and labeled data T = (S,X, x, y) with X = RV . Hence, x : S → RV and y : S → {0, 1}.

3.1.2 Familiy of functions

Throughout Section 3.1, we consider linear functions. More specifically, we consider Θ = RV and
f : Θ→ RX such that

∀θ ∈ Θ ∀x̂ ∈ X : fθ(x̂) = 〈θ, x̂〉 . (3.1)

3.1.3 Probabilistic model

Random variables

• For any s ∈ S, let Xs be a random variable whose realization is a vector xs ∈ RV , called the
attribute vector of s

• For any s ∈ S, let Ys be a random variable whose realization is a binary number ys ∈ {0, 1},
called the label of s

• For any v ∈ V , let Θv be a random variable whose realization is a real number θv ∈ R, called
a parameter

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

Xs

YsΘv

v ∈ V s ∈ S

Factorization

• Firstly:

P (X,Y,Θ) =
∏
s∈S

P (Ys | Xs,Θ)P (Xs)
∏
v∈V

P (Θv) (3.2)

9



10 CHAPTER 3. DECIDING

• Secondly:

P (Θ | X,Y ) =
P (X,Y,Θ)

P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv) (3.3)

Forms

We consider:

• The logistic distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(3.4)

• A σ ∈ R+ and the normal distribution:

∀v ∈ V : pΘv (θv) =
1

σ
√

2π
e−θ

2
v/2σ

2

(3.5)

3.1.4 Learning problem

Lemma 2 (Logistic regression) Estimating maximally probable parameters θ, given attributes
x and labels y, i.e.,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (3.6)

∀θ ∈ Θ: R(θ) = ‖θ‖22 (3.7)

λ =
log e

2σ2
(3.8)

Proof Firstly,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

(3.3)
= argmax

θ∈Rm

∏
s∈S

pYs|Xs,Θ(ys, xs, θ)
∏
v∈V

pΘv (θv)

= argmax
θ∈Rm

∑
s∈S

log pYs|Xs,Θ(ys, xs, θ) +
∑
v∈V

log pΘv (θv) (3.9)

Substituting in (3.9) the linearization

log pYs|Xs,Θ(ys, xs, θ)

= ys log pYs|Xs,Θ(1, xs, θ) + (1− ys) log pYs|Xs,Θ(0, xs, θ)

= ys log
pYs|Xs,Θ(1, xs, θ)

pYs|Xs,Θ(0, xs, θ)
+ log pYs|Xs,Θ(0, xs, θ) (3.10)

as well as (3.4) and (3.5) yields the form (3.11) below that is called the instance of the l2-regularized
logistic regression problem with respect to x, y and σ.

argmin
θ∈Rm

∑
s∈S

(
−ys〈θ, xs〉+ log

(
1 + 2〈θ,xs〉

))
+

log e

2σ2
‖θ‖22 (3.11)
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Exercise 1 a) Derive (3.11) from (3.9) using (3.10), (3.4) and (3.5)
b) Is the objective function of (3.11) convex?

3.1.5 Inference problem

Lemma 3 Estimating maximally probable labels y, given attributes x′ and parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Θ(y, x′, θ) (3.12)

is identical to the inference problem w.r.t. f and L. It has the solution

∀s ∈ S′ : ys =

{
1 if fθ(x

′
s) > 0

0 otherwise
(3.13)

Proof Firstly,

argmax
y∈{0,1}S′

pY |X,Θ(y, x′, θ)

= argmax
y∈{0,1}S′

∏
s∈S′

pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

log pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

(
ys log

pYs|Xs,Θ(1, x′s, θ)

pYs|Xs,Θ(0, x′s, θ)
+ log pYs|Xs,Θ(0, x′s, θ)

)
= argmin
y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x′s) + log

(
1 + 2fθ(x′s)

))
= argmin
y∈{0,1}S′

∑
s∈S′

L(fθ(x
′
s), ys) .

Secondly,

min
y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x′s) + log

(
1 + 2fθ(x′s)

))
=
∑
s∈S′

max
ys∈{0,1}

ysfθ(x
′
s) .

3.1.6 Inference algorithm

The inference problem is solved by computing independently for each s ∈ S′ the label

ys =

{
1 if 〈θ, x′s〉 > 0

0 otherwise
. (3.14)

The time complexity is O(|V ||S′|).
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Chapter 4

Semi-supervised and unsupervised
learning

4.1 Intuition

So far, we have considered learning problems w.r.t. labeled data (S,X, x, y) where, for every s ∈ S,
a label ys ∈ {0, 1} is given, and inference problems w.r.t. unlabeled data (S′, X ′, x) where no label
is given and every combination of labels y′ : S → {0, 1} is a feasible solution.

Next, we consider learning problems where not every label is given and inference problems
where not every combination of labels is feasible. Unlike before, the data we look at in both
problems coincides, consisting of tuples (S,X, x,Y) where Y ⊆ {0, 1}S is a set of feasible labelings.
In particular, Y = {0, 1}S is the special case of unlabeled data, and |Y| = 1 is the special case of
labeled data. Non-trivial choices of Y allow us to express problems of learning and inferring finite
structures such as maps (Chapter 5).

4.2 Definition

Definition 4 For any S 6= ∅ finite, called a set of samples, any X 6= ∅, called an attribute space,
any x : S → X and any ∅ 6= Y ⊆ {0, 1}S , called a set of feasible labelings , the tuple T = (S,X, x,Y)
is called constrained data.

Definition 5 For any constrained data T = (S,X, x,Y), any Θ 6= ∅ and family of functions
f : Θ→ RX , any R : Θ→ R+

0 , called a regularizer , any L : R×{0, 1} → R+
0 , called a loss function

and any λ ∈ R+
0 , called a regularization parameter , the instance of the learning and inference

problem w.r.t. T,Θ, f, R, L and λ is defined as

min
y∈Y

inf
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (4.1)

The special case of one-elementary Y = {y} is called the supervised learning problem.

The special case of one-elementary Θ = {θ̂} written below is called the inference problem.

min
y∈Y

∑
s∈S

L(fθ(xs), ys) (4.2)

13
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Chapter 5

Classifying

5.1 Maps

For any finite set A 6= ∅ whose elements we seek to classify and any finite set B 6= ∅ of class labels,
we are interested in maps ϕ : A→ B that assign to every element a ∈ A precisely one class label
ϕ(a) ∈ B. Maps are precisely those subsets of ϕ ⊆ A×B that satisfy

∀a ∈ A ∃b ∈ B : (a, b) ∈ ϕ (5.1)

∀a ∈ A ∀b, b′ ∈ B : (a, b) ∈ ϕ ∧ (a, b′) ∈ ϕ⇒ b = b′ . (5.2)

They are characterized by those functions y : A×B → {0, 1} that satisfy

∀a ∈ A :
∑
b∈B

yab = 1 . (5.3)

We reduce the problem of learning and inferring maps to the problem of learning and inferring
decisions, by choosing constrained data with

S = A×B (5.4)

Y =

{
y : A×B → {0, 1}

∣∣∣∣∣ ∀a ∈ A :
∑
b∈B

yab = 1

}
. (5.5)

5.2 Linear functions

5.2.1 Data

Throughout Section 5.2, we consider some finite set V 6= ∅ and constrained data (S,X, x,Y) with
S = A×B as in (5.4), X = B × RV , and Y as in (5.5). More specifically, we assume that, for any
(a, b) ∈ A×B, the class label b is the first attribute of (a, b), i.e.,

∀a ∈ A ∀b ∈ B ∃x̂ ∈ RV : xab = (b, x̂) (5.6)

As a special case, we consider labeled data where we are given just one Y = {y} with y satisfying
the constraints (5.3).

5.2.2 Familiy of functions

Throughout Section 5.2, we consider linear functions. More specifically, we consider Θ = RB×V
and f : Θ→ RX such that

∀θ ∈ Θ ∀b ∈ B ∀x̂ ∈ RV : fθ((b, x̂)) =
∑
v∈V

θbv x̂v = 〈θb·, x̂〉 . (5.7)

15
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5.2.3 Probabilistic model

Random variables

• For any (a, b) ∈ A×B, let Xab be a random variable whose realization is a vector xab ∈ B×RV ,
called the attribute vector of (a, b).

• For any (a, b) ∈ A×B, let Yab be a random variable whose realization is a binary number
yab ∈ {0, 1}, called the decision of classifying a as b

• For any b ∈ B and any v ∈ V , let Θbv be a random variable whose realization is a real
number θbv ∈ R, called a parameter

• Let Z be a random variable whose realization is a subset z ⊆ {0, 1}A×B . For multiple label
classification, we are interested in z = Y, the set of the characteristic functions of all maps
from A to B.

Conditional independence assumptions

We assume a probability distribution that factorizes according to Bayesian net depicted below.

Xab

Yab

Z

Θbv

v ∈ V a ∈ A

b ∈ B

Factorization

These conditional independence assumptions imply the following factorizations:

• Firstly:

P (X,Y, Z,Θ) = P (Z | Y )
∏

(a,b)∈A×B

P (Yab | Xab,Θ)
∏

(b,v)∈B×V

P (Θbv)
∏

(a,b)∈A×B

P (Xab)

(5.8)

• Secondly:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y )P (X,Y )

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | Y )P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏

(a,b)∈A×B

P (Yab | Xab,Θ)
∏

(b,v)∈B×V

P (Θbv) (5.9)
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• Thirdly,

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y )P (Y | X,Θ)

= P (Z | Y )
∏

(a,b)∈A×B

P (Yab | Xab,Θ) (5.10)

Forms

Here, we consider:

• The logistic distribution

∀(a, b) ∈ A×B : pYab|Xab,Θ(1) =
1

1 + 2−fθ(xab)
(5.11)

• A σ ∈ R+ and the normal distribution:

∀(b, v) ∈ B × V : pΘbv (θbv) =
1

σ
√

2π
e−θ

2
bv/2σ

2

(5.12)

• A uniform distribution on a subset:

∀z ⊆ {0, 1}A×B : pZ|Y (z) ∝

{
1 if y ∈ z
0 otherwise

(5.13)

Note that pZ|Y (Y) is non-zero iff the relation y−1(1) ⊆ A×B is a map.

5.2.4 Learning problem

Lemma 4 Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

argmax
θ∈RB×V

pΘ|X,Y (θ, x, y)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (5.14)

∀θ ∈ Θ: R(θ) = ‖θ‖22 (5.15)

λ =
log e

2σ2
(5.16)

Moreover, this problem separates into |B| independent supervised learning problems, each
w.r.t. parameters in RV , with L and λ as above, and with

∀θ′ ∈ RV : R′(θ′) = ‖θ′‖22 (5.17)

Proof Analogous to the case of binary classification from Section 3.1, we now obtain:

argmax
θ∈RB×V

pΘ|X,Y (θ, x, y)

= argmin
θ∈RB×V

∑
(a,b)∈A×B

(
−yabfθ(xab) + log

(
1 + 2fθ(xab)

))
+

log e

2σ2
‖θ‖22 . (5.18)
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Consider the unique x′ : A×B → RV such that, for any (a, b) ∈ A×B, we have xab = (b, x′ab).
Problem (5.18) separates into |B| many l2-regularized logistic regression problems, one for each

b ∈ B, because

min
θ∈RB×V

∑
(a,b)∈A×B

(
−yab〈θb·, x′ab〉+ log

(
1 + 2〈θb·,x

′
ab〉
))

+
log e

2σ2
‖θ‖22

= min
θ∈RB×V

∑
b∈B

(∑
a∈A

(
−yab〈θb·, x′ab〉+ log

(
1 + 2〈θb·,x

′
ab〉
))

+
log e

2σ2
‖θb·‖22

)

=
∑
b∈B

min
θb·∈RV

(∑
a∈A

(
−yab〈θb·, x′ab〉+ log

(
1 + 2〈θb·,x

′
ab〉
))

+
log e

2σ2
‖θb·‖22

)
.

5.2.5 Inference problem

Lemma 5 For any constrained data as defined above, any θ ∈ RB×V and any ŷ : A×B → {0, 1},
ŷ is a solution to the inference problem

min
y∈Y

∑
(a,b)∈A×B

L(fθ(xab), yab) (5.19)

iff there exists an ϕ : A→ B such that

∀a ∈ A : ϕ(a) ∈ max
b∈B
〈θb·, x′ab〉 (5.20)

and

∀(a, b) ∈ A×B : ŷab = 1⇔ ϕ(a) = b . (5.21)

Proof ∑
(a,b)∈A×B

L(fθ(xab), yab)

=
∑

(a,b)∈A×B

(L(fθ(xab), 1) yab + L(fθ(xab), 0) (1− yab))

=
∑

(a,b)∈A×B

(L(fθ(xab), 1)− L(fθ(xab), 0)) yab + const.

=
∑

(a,b)∈A×B

(−fθ(xab)) yab by (5.14)

=
∑

(a,b)∈A×B

(−〈θb·, x′ab〉) yab xab = (b, x′ab)

=
∑
a∈A

∑
b∈B

(−〈θb·, x′ab〉) yab

5.2.6 Inference algorithm

The inference problem is solved by solving (5.20) independently for each a ∈ A. The time complexity
is O(|A||B||V |).



Chapter 6

Supervised structured learning

6.1 Intuition

Even in the most general learning and inference problem w.r.t. constrained data (S,X, x,Y) we
have considered so far, attributes xs ∈ X are defined for single elements s ∈ S only, and solutions
are such that decisions ys, ys′ ∈ {0, 1} for distinct s, s′ ∈ S are independent unless they are tied by
constraints of a feasible set Y ⊂ {0, 1}S .

This mathematical abstraction of learning is too restrictive for certain applications. For example,
consider a task where we are given a digital image and need to decide for every pixel s ∈ S, by the
contents of the image around that pixel, whether the pixel is of interest (ys = 1) or not of interest
(ys = 0). Typically, decisions at neighboring pixels s, s′ ∈ S are more likely to be equal (ys = ys′)
than unequal (ys 6= ys′), and we may wish to learn how this increased probability depends on the
contents of the image. None of the mathematical abstractions of learning we have considered so far
is sufficient to express this dependency.

In order to lift this restriction, we will now define a supervised learning problem as well as
an inference problem in which attributes are associated with subsets of S, and in which decisions
can be tied by probabilistic dependencies. Therefor, we will introduce a family H : Θ→ RX×Y of
functions that quantify by Hθ(x, y) how incompatible attributes x ∈ X are with a combination
of decisions y ∈ {0, 1}S . We will define supervised structured learning as a problem of finding
one function from this family. We will define structured inference as the problem of finding a
combination of decisions y ∈ {0, 1}S that minimizes Hθ(x, ·).

6.2 Definition

Definition 6 A triple (S, F,E) is called a factor graph with variable nodes S and factor nodes F
iff S ∩ F = ∅ and (S ∪ F,E) is a bipartite graph such that ∀e ∈ E ∃s ∈ S ∃f ∈ F : e = {s, f}.

For any factor node f ∈ F , we denote by Sf = {s ∈ S | {s, f} ∈ E} the set of those variable
nodes that are neighbors of f .

Definition 7 A tuple T = (S, F,E, {Xf}f∈F , x) is called unlabeled structured data iff (S, F,E) is
a factor graph, every set Xf is non-empty, called the attribute space of f , and x ∈

∏
f∈F Xf , where

the Cartesian product
∏
f∈F Xf is called the attribute space of T . A tuple (S, F,E, {Xf}f∈F , x, y) is

called labeled structured data iff (S, F,E, {Xf}f∈F , x) is unlabeled structured data, and y ∈ {0, 1}S .

Definition 8 For any labeled structured data T = (S, F,E, {Xf}f∈F , x, y), the attribute space
X =

∏
f∈F Xf , the set Y = {0, 1}S , any Θ 6= ∅ and family of functions H : Θ → RX×Y ,

any R : Θ → R+
0 , called a regularizer , any L : RY × Y → R+

0 , called a loss function, and any
λ ∈ R+

0 , called a regularization parameter , the instance of the supervised structured learning problem

19
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0̄ 1̄ 2̄

01 120 1 2

Figure 6.1: The factor graph with S = {0̄, 1̄, 2̄} and F = {0, 1, 2, 01, 12} depicted above makes
explicit that a function H : {0, 1}S → R factorizes according to H(y) = h0(y0̄) + h1(y1̄) + h2(y2̄) +
h01(y0̄, y1̄) + h12(y1̄, y2̄).

w.r.t. T,Θ, H,R,L and λ is defined as

inf
θ∈Θ

λR(θ) + L(Hθ(x, ·), y) (6.1)

Intuitively, Hθ is a function that quantifies by Hθ(x, y) how incompatible attributes x ∈ X are
with a combination of decisions y ∈ {0, 1}S . Consequently, Hθ(x, ·) is a functional that assigns an
incompatibility to every combination of decisions.

Definition 9 For any unlabeled structured data T = (S, F,E, {Xf}f∈F , x) and any Ĥ : X ×
{0, 1}S → R, the instance of the inference problem w.r.t. T and Ĥ is defined as

min
y∈{0,1}S

Ĥ(x, y) (6.2)

6.3 Conditional graphical models

6.3.1 Data

Throughout Section 6.3, we consider labeled data (S, F,E, {Xf}f∈F , x, y) and an attribute space
X =

∏
f∈F Xf such that, for every f ∈ F , there is an nf ∈ N and Xf = Rnf .

6.3.2 Family of functions

Definition 10 For any factor graph G = (S, F,E), a function H : {0, 1}S → R is said to factorize
w.r.t. G iff, for every f ∈ F , there exists a function a function hf : {0, 1}Sf → R, called a factor of
H, such that

∀y ∈ {0, 1}S : H(y) =
∑
f∈F

hf (ySf ) . (6.3)

An example is shown in Fig. 6.1.

Definition 11 A tuple (S, F,E, {Xf}f∈F ,Θ, {hf}f∈F ) is called a conditional graphical model with
attribute space

∏
f∈F Xf = X and parameter space Θ iff (S, F,E) is a factor graph, Θ 6= ∅ and, for

every f ∈ F , Xf 6= ∅, called the attribute space of f , and hf : Θ→ RXf×{0,1}
Sf

, called a factor .

The H : Θ→ RX×{0,1}S defined below is called the energy function of the conditional graphical
model.

∀θ ∈ Θ ∀x ∈ X ∀y ∈ {0, 1}S : Hθ(x, y) =
∑
f∈F

hfθ(xf , ySf ) (6.4)

Throughout Section 6.3, we consider such a conditional graphical model. We make two additional
assumptions: Firstly, we assume that Θ is a finite-dimensional, real vector space, i.e., there exists
a finite, non-empty set J and Θ = RJ . Secondly, we assume that every function hf is linear in
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Θ, i.e., for every f ∈ F , there exists a ϕf : Xf × {0, 1}Sf → RJ such that for any xf ∈ Xf , any
ySf ∈ {0, 1}Sf and any θ ∈ Θ:

hfθ(xf , ySf ) = 〈θ, ϕf (xf , ySf )〉 (6.5)

For convenience, we define ξ : X × {0, 1}S → RJ such that for any x ∈ X and any y ∈ {0, 1}S :

ξ(x, y) =
∑
f∈F

ϕf (xf , ySf ) (6.6)

Thus, we obtain for any θ ∈ Θ, any x ∈ X and any y ∈ Y :

Hθ(x, y) =
∑
f∈F

hfθ(xf , ySf )

=
∑
f∈F

〈θ, ϕf (xf , ySf )〉

=

〈
θ,
∑
f∈F

ϕf (xf , ySf )

〉
= 〈θ, ξ(x, y)〉 (6.7)

6.3.3 Probabilistic model

Random Variables

• Let X be a random variable whose realization is an element x ∈ X of the attribute space.

• Let Y be a random variable whose realization is a combination of decisions y ∈ {0, 1}S

• For any j ∈ J , let Θj a random variable whose realization is a θj ∈ R

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

X

YΘj

j ∈ J

Factorization

• Firstly:

P (X ,Y,Θ) = P (Y | X ,Θ)P (X )
∏
j∈J

P (Θj) (6.8)

• Secondly:

P (Θ | X ,Y) =
P (X ,Y,Θ)

P (X ,Y)

=
P (Y | X ,Θ)P (X )

∏
j∈J P (Θj)

P (X ,Y)

∝ P (Y | X ,Θ)
∏
j∈J

P (Θj) (6.9)
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Forms

Definition 12 For any conditional graphical model, the partition function Z : X ×Θ→ R and
Gibbs distribution p : X × {0, 1}S ×Θ→ [0, 1] are defined by the forms

Z(x, θ) =
∑

y∈{0,1}S
e−Hθ(x,y) (6.10)

p(y, x, θ) =
1

Z(x, θ)
e−Hθ(x,y) (6.11)

We consider in (6.9) the Gibbs distribution of our conditional graphical model, i.e.

pY|X ,Θ(y, x, θ) =
1

Z(x, θ)
e−Hθ(x,y) . (6.12)

Moreover, we consider in (6.9) a σ ∈ R+ and, for every j ∈ J , the normal distribution

pΘj (θj) =
1

σ
√

2π
e−θ

2
j/2σ

2

. (6.13)

6.3.4 Learning problem

Lemma 6 Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

argmax
θ∈RJ

pΘ|X ,Y(θ, x, y)

is identical to the supervised structured learning problem w.r.t. L, R and λ such that

L(Hθ(x, ·), y) = Hθ(x, y) + lnZ(x, θ) (6.14)

= Hθ(x, y) + ln
∑

y′∈{0,1}S
e−Hθ(x,y′) (6.15)

= 〈θ, ξ(x, y)〉+ ln
∑

y′∈{0,1}S
e−〈θ,ξ(x,y

′)〉 (6.16)

R(θ) = ‖θ‖22 (6.17)

λ =
1

2σ2
(6.18)

Exercise 2 Prove Lemma 6.

Lemma 7 The first and second partial derivatives of the logarithm of the partition function have
the forms

∂

∂θj
lnZ =

1

Z(x, θ)

∑
y′∈{0,1}S

(−ξj(x, y′))e−〈θ,ξ(x,y
′)〉 (6.19)

= Ey′∼pY|X ,Θ(−ξj(x, y′)) (6.20)

∂2

∂θj ∂θk
lnZ = Ey′∼pY|X ,Θ(ξj(x, y

′)ξk(x, y′))− Ey′∼pY|X ,Θ(ξj(x, y
′))Ey′∼pY|X ,Θ(ξk(x, y′))

= COVy′∼pY|X ,Θ(ξj(x, y
′), ξk(x, y′)) (6.21)

Exercise 3 Prove Lemma 7.

Lemma 8 Supervised structured learning of a conditional graphical model is a convex optimization
problem.

Exercise 4 Prove Lemma 8 using (6.21).
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6.3.5 Inference problem

Lemma 9 Estimating maximally probable decisions y, given attributes x and parameters θ, i.e.

argmax
y∈{0,1}S

pY|X ,Θ(x, y, θ) (6.22)

is identical to the structured inference problem with Ĥ(x, y) = Hθ(x, y).

Exercise 5 Prove Lemma 9.

6.3.6 Learning algorithm

On the on hand, the supervised structured learning problem for conditional graphical models can
be solved exactly by means of the steepest descent algorithm, due to its convexity (Lemma 8).

Algorithm 1 Steepest descent with tolerance parameter ε ∈ R+
0

θ := 0
repeat

d := ∇θL(Hθ(x, ·), y)
η := argminη′∈R L(Hθ−η′d(x, ·), y) (line search)
θ := θ − ηd
if ‖d‖ < ε

return θ

On the other hand, the time complexity of computing the gradient is O(2|S|), due to the
summations involved in computing the partition function Z(x, θ) and expectation values (6.19).
More specifically, computing a derivative

− ∂

∂θj
lnZ = Ey′∼pY|X ,Θ(ξj(x, y

′))

=
1

Z(x, θ)

∑
y′∈{0,1}S

ξj(x, y
′) e−〈θ,ξ(x,y

′)〉

=
1

Z(x, θ)

∑
y′∈{0,1}S

∑
f∈F

ϕfj(xf , y
′
Sf

) e−〈θ,ξ(x,y
′)〉

=
1

Z(x, θ)

∑
f∈F

∑
y′
S(f)
∈{0,1}S(f)

∑
y′
S\S(f)

∈{0,1}S\S(f)

ϕfj(xf , y
′
S(f)) e

−〈θ,ξ(x,y′)〉

=
∑
f∈F

∑
y′
S(f)
∈{0,1}S(f)

ϕfj(xf , y
′
S(f))

1

Z(x, θ)

∑
y′
S\S(f)

∈{0,1}S\S(f)

e−〈θ,ξ(x,y
′)〉 (6.23)

=
∑
f∈F

∑
y′
S(f)
∈{0,1}S(f)

ϕfj(xf , y
′
S(f)) pYS(f)|X ,Θ(y′S(f) | x, θ) (6.24)

=
∑
f∈F

Ey′
S(f)
∼pYS(f)|X ,Θ

(ϕfj(xf , y
′
S(f))) (6.25)

requires computing

• the partition function

Z(x, θ) =
∑

y′∈{0,1}S
e−〈θ,ξ(x,y

′)〉 (6.26)
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• for every factor f ∈ F , the so-called factor marginal

pYS(f)|X ,Θ(y′S(f) | x, θ) =
1

Z(x, θ)

∑
y′
S\S(f)

∈{0,1}S\S(f)

e−〈θ,ξ(x,y
′)〉 (6.27)

• for every factor f ∈ F , the expectation value∑
y′
S(f)
∈{0,1}S(f)

ϕfj(xf , y
′
S(f)) pYS(f)|X ,Θ(y′S(f) | x, θ) . (6.28)

In the special case where the degree maxf∈F S(f) of the conditional graphical model is bounded
by a constant, computing (6.28) from the factor marginal takes constant time. The challenge in
(6.27) or all (6.26) is to sum the function

ψθ(x, y
′) := e−〈θ,ξ(x,y

′)〉 (6.29)

over assignments to some (6.27) or all (6.26) variables y′. Defining

ψfθ(xf , y
′
S(f)) = e−〈θ,ϕf (xf ,y

′
S(f))〉 (6.30)

and exploiting factorization (6.6), we obtain

e−〈θ,ξ(x,y
′)〉

= e−
∑
f∈F 〈θ,ϕf (xf ,yS(f))〉 (6.31)

=
∏
f∈F

e−〈θ,ϕf (xf ,yS(f))〉 (6.32)

=
∏
f∈F

ψfθ(xf , yS(f)) . (6.33)

Thus, the challenge in (6.27) and (6.26) is to compute a sum of a product of functions. Specifically:

Z(x, θ) =
∑

y′∈{0,1}S

∏
f∈F

ψfθ(xf , yS(f)) (6.34)

pYS(f)|X ,Θ(y′S(f) | x, θ) =
1

Z(x, θ)

∑
y′
S\S(f)

∈{0,1}S\S(f)

∏
f∈F

ψfθ(xf , yS(f)) (6.35)

One approach to tackle this problem is to sum over variables recursively. In order to avoid
redundant computation, Kschischang et al. (2001) define partial sums:

Definition 13 (Kschischang et al. (2001)) For any variable node s ∈ S and any factor node
f ∈ F , the functions

ms→f ,mf→s : {0, 1} → R , (6.36)

called messages, are defined such that for all ys ∈ {0, 1}:

ms→f (ys) =
∏

f ′∈F (s)\{f}

mf ′→s(ys) (6.37)

mf→s(ys) =
∑

yS(f)\{s}

ψfθ(xf , yS(f))
∏

s′∈S(f)\{s}

ms′→f (ys′) (6.38)
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Lemma 10 If the factor graph is acyclic, messages are defined recursively by (6.37) and (6.38),
beginning with the messages from leaves. Moreover, for any s ∈ S and any f ∈ F :

Z(x, θ) =
∑

ys∈{0,1}

∏
f ′∈F (s)

mf ′→s(ys) (6.39)

pYS(f)|X ,Θ(y′S(f) | x, θ) =
1

Z(x, θ)
ψfθ(xf , yS(f))

∏
s′∈S(f)

ms′→f (ys′) (6.40)

Exercise 6 Prove Lemma 10.

The recursive computation of messages is known as message passing .
For conditional graphical models whose factor graph is acylic, the supervised structured learning

problem can be solved efficiently by means of the steepest descent algorithm and message passing,
by Lemma 8 and Lemma 10.

For conditional graphical models whose factor graph is cyclic, the definition of messages by
(6.37) and (6.38) is cyclic as well. The partition function and marginals cannot be computed by
message passing in general. A heuristic without guarantee of correctness or even convergence is to
initialize all messages as normalized constant functions and update messages according to some
schedule, e.g., synchronously. This heuristic is known as loopy belief propagation and has proven
suitable for some applications.
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6.3.7 Inference algoritms

Iterated conditional modes (ICM)

For the inference problem

argmin
y∈{0,1}S

Hθ(x, y) , (6.41)

a heuristic that is guaranteed to converge and terminate in a (possibly sub-optimal) feasible solution
is local search w.r.t. transformations that change one variable at a time:

Definition 14 For any s ∈ S, let flips : {0, 1}S → {0, 1}S such that for any y ∈ {0, 1}S and any
t ∈ S:

flips[y](t) =

{
1− yt if t = s

yt otherwise
. (6.42)

Algorithm 2 Greedy local search w.r.t. transformations that change one variable at a time is
defined by the recursion below. In the context of graphical models and probabilistic inference, this
algorithm is also known as iterated conditional modes, or ICM (Besag, 1986).

y′ = icm(y)

choose s ∈ argmin
s′∈S

Hθ(x,flips′ [y])−Hθ(x, y)

if Hθ(x, flips[y]) < Hθ(x, y)
y′ := icm(flips[y])

else
y′ := y

Message passing

The inference problem

argmin
y∈{0,1}S

∑
f∈F

hfθ(xf , yS(f)) (6.43)

consists in computing the minimum of a sum of of functions. This problem is analogous to that of
computing the sum of a product of functions (Section 6.3.6) in that both (R,min,+) and (R,+, ·)
are commutative semi-rings. This analogy is sufficient to transfer the idea of message passing,
albeit with messages adapted to the (R,min,+) semi-ring:

Definition 15 (Kschischang et al. (2001)) For any variable node s ∈ S and any factor node
f ∈ F , the functions

µs→f , µf→s : {0, 1} → R , (6.44)

called messages, are defined such that for all ys ∈ {0, 1}:

µs→f (ys) =
∑

f ′∈F (s)\{f}

µf ′→s(ys) (6.45)

µf→s(ys) = min
yS(f)\{s}

hfθ(xf , yS(f)) +
∑

s′∈S(f)\{s}

µs′→f (ys′) (6.46)

Lemma 11 If the factor graph is acyclic, messages are defined recursively by (6.45) and (6.46),
beginning with the messages from leaves. Moreover, for any s ∈ S:

min
y∈{0,1}S

∑
f∈F

hfθ(xf , yS(f)) = min
ys∈{0,1}

∑
f ′∈F (s)

µf ′→s(ys)
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Proof Analogous to Lemma 10.

For conditional graphical models whose factor graph is acyclic, the inference problem can be
solved efficiently by means of message passing, by Lemma 11.

For conditional graphical models whose factor graph is cyclic, the definition of messages by (6.45)
and (6.46) is cyclic as well. The inference problem cannot be solved by message passing in general.
A heuristic without guarantee of correctness or even convergence is to initialize all messages as
constant zero and update messages according to some schedule, e.g., synchronously. This heuristic
is also known as loopy belief propagation and has proven suitable for some applications.
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Chapter 7

Clustering

7.1 Decompositions and multicuts

This section is concerned with learning and inferring decompositions (clusterings) of a graph. We
introduce some terminology of Horňáková et al. (2017):

Definition 16 Let G = (A,E) be any graph. A subgraph G′ = (A′, E′) of G is called a component
of G iff G′ is non-empty, node-induced1 and connected2. A partition Π of the node set A is called a
decomposition of G iff, for every U ∈ Π, the subgraph (U,E ∩

(
U
2

)
) of G induced by U is connected

(and thus a component of G).

For any graph G, we denote by DG the set of all decompositions of G. Useful in the study of
decompositions are the multicuts of a graph:

Definition 17 For any graph G = (A,E), a subset M ⊆ E of edges is called a multicut of G iff,
for every cycle C ⊆ E of G, we have |C ∩M | 6= 1.

For any graph G, we denote by MG the set of all multicuts of G. For any decomposition of a
graph G, the set of those edges that straddle distinct components is a multicut of G. This multicut
is said to be induced by the decomposition. In fact, the map from decompositions to induced
multicuts is a bijection from DG to MG (Horňáková et al., 2017, Lemma 2). This bijection allows
us to state the problem of learning and inferring decompositions as one of learning and inferring
multicuts.

The characteristic function y : E → {0, 1} of a multicut y−1(1) decides, for every edge {a, a′} =
e ∈ E, whether the incident nodes belong to the same component (ye = 0) or distinct components
(ye = 1). By the definition of a multicut, these decisions are not necessarily independent. More
specifically:

Lemma 12 For any graph G = (V,E) and any y : E → {0, 1}, the set y−1(1) of those edges that
are mapped to 1 is a multicut of G iff the following inequalities are satisfied:

∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (7.1)

Exercise 7 a) Prove Lemma 12.

b) Show that it is sufficient in (7.1) to consider only chordless cycles.

1I.e. E′ = E ∩
(A′

2

)
2A component is not necessarily maximal w.r.t. the subgraph relation.
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Now that we have a finite set E, decisions y : E → {0, 1} and constraints (7.1), we can state
the problem of learning and inferring multicuts as a learning and inference problem (4.1) with

S = E (7.2)

Y =

y : S → {0, 1}

∣∣∣∣∣∣ ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′

 (7.3)

7.2 Linear functions

7.2.1 Data

Throughout Section 7.2, we consider some graph G = (A,E) and constrained data (S,X, x,Y)
with S = E, as in (7.2), Y defined as in (7.3), and X = RV with some finite, non-empty set V . As
a special case, we consider labeled data, i.e., Y = {y} with y satisfying the constraints (7.1).

7.2.2 Familiy of functions

Throughout Section 7.2, we consider linear functions. More specifically, we consider Θ = RV and
f : Θ→ RX such that

∀θ ∈ Θ ∀x̂ ∈ RV : fθ(x̂) = 〈θ, x̂〉 . (7.4)

7.2.3 Probabilistic model

Random variables

• For any {a, a′} ∈ S, let X{a,a′} be a random variable whose realization is a vector x{a,a′} ∈ RV ,
called the attribute vector of the pair {a, a′}.

• For any {a, a′} ∈ S, let Y{a,a′} be a random variable whose realization is a binary number
y{a,a′} ∈ {0, 1}, called the decision of assigning a and a′ to distinct components

• For any v ∈ V , let Θv be a random variable whose realization is a real number θv ∈ R, called
a parameter

• Let Z be a random variable whose realization is a subset z ⊆ {0, 1}S . We are interested in
z = Y, a characterization of all multicuts (and hence, decompositions) of G

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

Xs

Ys

Z

Θv

v ∈ V s ∈ S

Factorization

These conditional independence assumptions imply the following factorizations:

• Firstly:

P (X,Y, Z,Θ) = P (Z | Y )
∏
s∈S

P (Ys | Xs,Θ)
∏
s∈S

P (Xs)
∏
v∈V

P (Θv) (7.5)
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• Secondly:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y )P (X,Y )

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | Y )P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv) (7.6)

• Thirdly,

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y )P (Y | X,Θ)

= P (Z | Y )
∏
s∈S

P (Ys | Xs,Θ) (7.7)

Forms

Here, we consider:

• The logistic distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(7.8)

• A σ ∈ R+ and the normal distribution:

∀v ∈ V : pΘv (θv) =
1

σ
√

2π
e−θ

2
v/2σ

2

(7.9)

• A uniform distribution on a subset:

∀z ⊆ {0, 1}S : pZ|Y (z) ∝

{
1 if y ∈ z
0 otherwise

(7.10)

Note that pZ|Y (Y) is non-zero iff y−1(1) is a multicut and hence defines a decomposition of
G.

7.2.4 Learning problem

Corollary 1 Estimating maximally probable parameters θ, given attributes x and labels y, i.e.,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (7.11)

∀θ ∈ Θ: R(θ) = ‖θ‖22 (7.12)

λ =
log e

2σ2
(7.13)



32 CHAPTER 7. CLUSTERING

7.2.5 Inference problem

Corollary 2 For any constrained data as defined above and any θ ∈ RV , the inference problem
has the form of correlation-clustering, i.e.

min
y : S→{0,1}

∑
{a,a′}∈S

(−〈θ, x{a,a′}〉) y{a,a′} (7.14)

subject to ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ . (7.15)

correlation-clustering has been studied intensively, notably by Chopra and Rao (1993),
Bansal et al. (2004) and Demaine et al. (2006).

Lemma 13 (Bansal et al. (2004)) correlation-clustering is np-hard.

Bansal et al. (2004) establish np-hardness of correlation-clustering by a reduction of
k-terminal-cut whose np-hardness is an important result of Dahlhaus et al. (1994).

7.2.6 Inference algorithm

Below, we discuss three local search algorithms for correlation-clustering. For simplicity, we
define c : S → R such that

∀{a, a′} ∈ S : c{aa′} = −〈θ, x{a,a′}〉 (7.16)

and write the objective function ϕ : {0, 1}S → R such that

∀y ∈ {0, 1}S : ϕ(y) =
∑

{a,a′}∈S

c{a,a′} y{a,a′} (7.17)

Greedy joining

The greedy joining algorithm starts from any initial decomposition and searches for decompositions
with lower objective value by joining pairs of components recursively. By this procedure, components
can only grow, and the number of components decreases by precisely one in every step. Thus, one
typically starts from the finest decomposition Π0 of G = (A,E) into one-elementary components.

Definition 18 For any graph G = (A,E) and any disjoint sets B,C ⊆ A, the pair {B,C} is called
neighboring in G iff there exist nodes b ∈ B and c ∈ C such that {b, c} ∈ E.

For any decomposition Π of a graph G = (A,E), we define

EΠ =
{
{B,C} ∈

(
Π
2

) ∣∣∣ ∃b ∈ B ∃c ∈ C : {b, c} ∈ E
}

. (7.18)

Definition 19 For any decomposition Π of G = (A,E) and any {B,C} ∈ EΠ, let joinBC [Π] be
the decomposition of G obtained by joining the sets B and C in Π, i.e.

joinBC [Π] = (Π \ {B,C}) ∪ {B ∪ C} . (7.19)

Algorithm 3 The greedy joining algorithm is defined by the recursion below.

Π′ = greedy-joining(Π)

choose {B,C} ∈ argmin
{B′,C′}∈EΠ

ϕ(yjoinB′C′ [Π])− ϕ(yΠ)

if ϕ(yjoinBC [Π])− ϕ(yΠ) < 0
Π′ := greedy-joining(joinBC [Π])

else
Π′ := Π

Exercise 8 a) Write the difference ϕ(yjoinB′C′ [Π])− ϕ(yΠ) in terms of the c defined in (7.16).
b) Implement greedy joining efficiently.
c) Establish a bound on the time complexity of your implementation.
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Greedy moving

The greedy moving algorithm starts from any initial decomposition, e.g., the fixed point of greedy
joining. It seeks to lower the objective value by recursively moving individual nodes from one
component to a neighboring component, or to a new component. When a node is moved to a
new component, the number of components can increase. When the last node is moved from a
component, the number of components decreases.

Definition 20 For any graph G, a component G′ of G is called maximal iff there is no subgraph
of G that is both a strict supergraph of G′ and a component of G.

Definition 21 For any graph G = (A,E) and any decomposition Π of G, the decomposition Π is
called coarsest iff, for every U ∈ Π, the component (U,E ∩

(
U
2

)
) induced by U is maximal.

Lemma 14 For any graph G, the coarsest decomposition is unique.

For any graph G, we denote the coarsest decomposition by Π∗G.

Definition 22 For any graph G = (A,E), any decomposition Π of A and any a ∈ A, choose Ua
to be the unique Ua ∈ Π such that a ∈ Ua, and let

Na = {∅} ∪ {W ∈ Π | a /∈W ∧ ∃w ∈W : {a,w} ∈ E} (7.20)

Ga =
(
Ua \ {a}, E ∩

(
Ua\{a}

2

))
(7.21)

For any U ∈ Na, let moveaU [Π] the decomposition of A obtained by moving the node a to the
set U , i.e.

moveaU [Π] = Π \ {Ua, U} ∪ {U ∪ {a}} ∪Π∗Ga . (7.22)

Algorithm 4 The greedy moving algorithm is defined by the recursion below.

Π′ = greedy-moving(Π)

choose (a, U) ∈ argmin
(a′,U ′)∈A×(Π∪{∅})

ϕ(ymovea′U′ [Π])− ϕ(yΠ)

if ϕ(ymoveaU [Π])− ϕ(yΠ) < 0
Π′ := greedy-moving(moveaU [Π])

else
Π′ := Π

Exercise 9 a) Write the difference ϕ(ymoveaU [Πt])− ϕ(yΠt) in terms of the c defined in (7.16).

b) Implement greedy moving.

Greedy moving using the technique of Kernighan and Lin (1970)

Both algorithms discussed above terminate as soon as no transformation (join and move, resp.) leads
to a partition with strictly lower objective value. This can be sub-optimal in case transformations
that increase the objective value at one point in the recursion can lead to transformations that
decrease the objective value at later points in the recursion and the decrease overcompensates the
increase. A generalization of greedy local search introduced by Kernighan and Lin (1970) can
escape such sub-optimal fixed points. It is applied to greedy moving below.

Algorithm 5 The greedy moving algorithm generalized by the technique of Kernighan and Lin
(1970) is defined by the recursion below.
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Π′ = greedy-moving-kl(Π)

Π0 := Π
δ0 := 0
A0 := A
t := 0
repeat (build sequence of moves)

choose (at, Ut) ∈ argmin
(a,U)∈At×(Π∪{∅})

ϕ(ymoveaU [Πt])− ϕ(yΠt)

Πt+1 := moveatUt [Πt]
δt+1 := ϕ(yΠt+1)− ϕ(yΠt) < 0
At+1 := At \ {at} (move at only once)
t := t+ 1

until At = ∅

t̂ := min argmin
t′∈{0,...,|A|}

t′∑
τ=0

δτ (choose sub-sequence)

if
t̂∑

τ=0
δτ < 0

Π′ := greedy-moving-kl(Πt̂) (recurse)
else

Π′ := Π (terminate)

Exercise 10 a) Implement greedy moving using the technique of Kernighan and Lin (1970).
b) Generalize the greedy joining algorithm using the technique of Kernighan and Lin (1970).
c) Implement greedy joining using the technique of Kernighan and Lin (1970).
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