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Chapter 1

Introduction

1.1 Notation

We shall use the following notation:

e We write “iff” as shorthand for “if and only if”
e For any m € N, we define [m] = {0,...,m — 1}.
e For any set A, we denote by 24 the power set of A

e For any set A and any m € N, we denote by (7‘2) = {B € 24 | |B| = m} the set of all
m-elementary subsets of A

e For any sets A, B, we denote by B4 the set of all maps from A to B
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Chapter 2

Supervised learning

2.1 Intuition

Informally, supervised learning is the problem of finding in a family g : © — Y X of functions, one
go : X — Y that minimizes a weighted sum of two objectives:

1. g deviates little from a finite set {(xs,ys)}ses of input-output-pairs
2. g has low complexity, as quantified by a function R : © — R{

We note that the family g can have meaning beyond a mere parameterization of functions from
X to Y. For instance, © can be a set of forms, g the functions defined by these forms, and R the
length of forms. In that case, supervised learning is really an optimization problem over forms
of functions, and R penalizes the complexity of these forms. Moreover, g can be chosen so as to
constrain the set of functions from X to Y in the first place.

We concentrate exclusively on the special case where Y is finite. In fact, we concentrate on the
case where Y = {0, 1} in this chapter and reduce more general cases to this case in Chapter 4.

Moreover, we allow ourselves to take a detour by not optimizing over a family g : © — {0, 1}¥
directly but instead optimizing over a family f : © — R¥X and defining g w.r.t. f via a function
L:Rx {0,1} — R{, called a loss function, such that

Ve OVreX: gp(z)=argmin L(fp(x),7) . (2.1)
9e{0,1}

2.2 Definition

Definition 1 For any S # @ finite, called a set of samples, any X # @, called an attribute space
and any x : S — X, the tuple (S, X, x) is called unlabeled data.

For any y : S — {0, 1}, given in addition and called a labeling, the tuple (S, X, z,y) is called
labeled data.

Definition 2 For any labeled data T = (S, X, z, y), any © # & and family of functions f : © — RX,
any R : © — Rar, called a regularizer, any L : R x {0,1} — Ra“, called a loss function, and
any \ € Rg, called a regularization parameter, the instance of the supervised learning problem
w.r.t. 7,0, f, R, L and X is defined as

1
AR(0) + @ZL(fQ(xs)vys) (2.2)

ses

inf
6cO

Definition 3 For any unlabeled data T'= (S, X, z), any f:X 3 Randany L:R x {0,1} = R{,
the instance of the inference problem w.r.t. T, f and L is defined as

min > L(f(xs),44) (2.3)

’ 0,18
v e{0.1}5 72

7
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Lemma 1 The solutions to the inference problem are the y : S — {0,1} such that

VseS: y, €argmin L(f(xs),9) . (2.4)
9€{0,1}
Moreover, if

f(X)c{o,1} (2.5)

and
WreRVYjE{0,1): L) = {(1) ftgejwie (2.6)

then
VseS: yl=flxy) . (2.7)

PROOF Generally, we have

Jain 2 L(f(xs),ys) = 2. ,min L(f(xs),vs) (2.8)

By (2.5), L(f(zs), f(z,)) is well-defined for any s € S. By (2.6) and non-negativity of L, we
have

Vys € {0,1}:  L(f(xs), f(xs)) =0 < L(f(2s),ys) - (2.9)

Thus, ys = f(xs) is optimal for any s € S.

We note that the exact supervised learning problem formalizes a philosophical principle known
as Ockham’s razor.



Chapter 3

Deciding

3.1 Linear functions

3.1.1 Data

Throughout Section 3.1, we consider real attributes. More specifically, we consider some finite set
V # @ and labeled data T = (S, X, z,y) with X =RVY. Hence, z: S — RY and y: S — {0,1}.

3.1.2 Familiy of functions

Throughout Section 3.1, we consider linear functions. More specifically, we consider © = R" and
f:© — RX such that

VoeOVieX: fo(i)=1(0,%) . (3.1)

3.1.3 Probabilistic model

Random variables

e For any s € S, let X, be a random variable whose realization is a vector z, € RY, called the
attribute vector of s

e For any s € S, let Y be a random variable whose realization is a binary number ys € {0,1},
called the label of s

e For any v € V, let ©, be a random variable whose realization is a real number 6, € R, called
a parameter

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

X
@v O 'O Ys
veV seSs
Factorization
e Firstly:
P(X,v,0) = [[ P(Y: | X,,0)P(X,) [ P(©.) (3.2)
sesS veV
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e Secondly:
P(X,Y,0)
P(X)Y)
P(Y | X,0) P(X) P(©)
P(X,)Y)
x P(Y | X,0)P(©)
= [[ reve | x..0) I] P©) (3.3)

seS veV

PO X,Y)=

Forms

We consider:

e The logistic distribution

1
Vse€S:  pyx.e(l)= [ =Cs) (3.4)
e A 0 € Rt and the normal distribution:
1
YveV: po, (0y) = /2" (3.5)

o\2r
3.1.4 Learning problem

Lemma 2 (Logistic regression) FEstimating maximally probable parameters 6, given attributes
x and labels y, i.e.,

argmax p@\X,Y(vaay)
OeR™

is identical to the supervised learning problem w.r.t. L, R and A\ such that

VreRVje{0,1}: L(r,9) = —gr +log(1+2") (3.6)
Vo € O: R() = ||0]|3
__loge

A= 502 (3.8)

Proor Firstly,

argmax p@\X,Y(ev €L, y)

9eR™
(3.3)
= argmax H Dy, | Xs,0 yé7 xba H p@v
OER™ seS veV
= argmax Zlogpy 1x,,0(Us, Ts, 0) + Z log pe, (6y) (3.9)
PER™ s€s eV

Substituting in (3.9) the linearization

longS|X5,@(ysax870)
= yslogpy,x..6(l,7s0) + (1 —ys)logpy, x.,6(0,zs,0)
pYA}(5 @(1ax8a9)
d I 0 0 3.10
pv.|x..0(0,75,0) *logpy.ix. (0. 6) (3.10)

as well as (3.4) and (3.5) yields the form (3.11) below that is called the instance of the la-regularized
logistic regression problem with respect to x, y and o.

1
argmin Y (—ys<9,xs> +log (1 + 2<97ms>)) Ogeneu2 (3.11)
oER™ sES

= yslog
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Exercise 1 a) Derive (3.11) from (3.9) using (3.10), (3.4) and (3.5)
b) Is the objective function of (3.11) convex?

3.1.5 Inference problem

11

Lemma 3 FEstimating maximally probable labels y, given attributes ' and parameters 0, i.e.,

argmax  py|x,e(y,z’,0)
y€{0,1}%

18 identical to the inference problem w.r.t. f and L. It has the solution

Proor Firstly,

Secondly,

min
y€{0,1}5’

argmax
ye{0,1}5

argmax
y€{0,1}5’

argmax
ye{0,1}5

argmax
ye{0,1}5

argmin
ye{0,1}5

argmin
ye{0,1}5

0 otherwise

Vse S ys:{

pY\X,@(ya xlv 9)

H pYS\Xs,@(y& x.ly 9)
ses’

> logpy,ix. 0(ys: 24, 0)
seS’

pYS\Xs,@(lal{saa) /
S (1 1 0,26
(y Ogil?‘x/s\xs,@(O,x’s,G)—|r o8 Pv.1x.,0(0: 2-6)

> (—ysfe(:v’s) +log (1 + 2f9(’”1‘)))

ses’

Z L(f@(ils)vys) :

ses’

> (—wefolal) +1og (142700 ) ) = 37 max y.fole) -

seS’

ses’ va€{0,1}

3.1.6 Inference algorithm

The inference problem is solved by computing independently for each s € S’ the label

_ {1 if (0,2) > 0

0 otherwise

The time complexity is O(|V||.S7]).

(3.12)

(3.13)

(3.14)
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Chapter 4

Semi-supervised and unsupervised
learning

4.1 Intuition

So far, we have considered learning problems w.r.t. labeled data (S, X, z,y) where, for every s € S,
a label ys € {0, 1} is given, and inference problems w.r.t. unlabeled data (S’, X', z) where no label
is given and every combination of labels 3’ : S — {0, 1} is a feasible solution.

Next, we consider learning problems where not every label is given and inference problems
where not every combination of labels is feasible. Unlike before, the data we look at in both
problems coincides, consisting of tuples (S, X, z,)) where ) C {0,1}" is a set of feasible labelings.
In particular, ) = {0, 1} is the special case of unlabeled data, and |)| = 1 is the special case of
labeled data. Non-trivial choices of ) allow us to express problems of learning and inferring finite
structures such as maps (Chapter 5).

4.2 Definition

Definition 4 For any S # @ finite, called a set of samples, any X # &, called an attribute space,
any z: S — X and any @ # Y C {0,1}°, called a set of feasible labelings, the tuple T = (S, X, z,)))
is called constrained data.

Definition 5 For any constrained data T = (S, X,x,)), any © # & and family of functions
f:©—=RX any R: © — R, called a regularizer, any L : R x {0,1} — R{, called a loss function
and any A\ € RSL, called a regularization parameter, the instance of the learning and inference
problem w.r.t. T,0, f, R, L and A is defined as

. . 1
15161%}1912(5) AR(6) + E ;L(fe(l"s)yys) (4.1)

The special case of one-elementary ) = {y} is called the supervised learning problem.
The special case of one-elementary © = {6} written below is called the inference problem.

min ZL(fO(xs)ays) (42)
seS

yey

13



14

CHAPTER 4. SEMI-SUPERVISED AND UNSUPERVISED LEARNING



Chapter 5

Classitying

5.1 Maps

For any finite set A # @ whose elements we seek to classify and any finite set B # & of class labels,
we are interested in maps ¢ : A — B that assign to every element a € A precisely one class label
©(a) € B. Maps are precisely those subsets of ¢ C A x B that satisfy

Vae AFbeB: (ab) ey (5.1)
Vae AVb,Y € B: (a,b) € pA(a,b)ep=b=1 .
They are characterized by those functions y : A x B — {0,1} that satisfy
VacA: Y ya=1. (5.3)
beB

We reduce the problem of learning and inferring maps to the problem of learning and inferring
decisions, by choosing constrained data with

S=AxB (5.4)

Va € A: Zyab=1} ) (5.5)

beB

y:{y:AxB%{O,l}

5.2 Linear functions

5.2.1 Data

Throughout Section 5.2, we consider some finite set V' # @ and constrained data (S, X, z,)) with
S=AxBasin (5.4), X = BxRY, and ) as in (5.5). More specifically, we assume that, for any
(a,b) € A x B, the class label b is the first attribute of (a,b), i.e.,

Vac AVbe B3 €RY: 4 = (b,1) (5.6)
As a special case, we consider labeled data where we are given just one Y = {y} with y satisfying

the constraints (5.3).

5.2.2 Familiy of functions

Throughout Section 5.2, we consider linear functions. More specifically, we consider © = REXV
and f:© — R¥X such that

VoeObe BVE€RY:  fo((b,2) =D Opy iy = (6, &) . (5.7)
veV

15
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5.2.3 Probabilistic model
Random variables

e For any (a,b) € Ax B, let X, be a random variable whose realization is a vector x4, € B x RY,
called the attribute vector of (a,b).

e For any (a,b) € A x B, let Yy, be a random variable whose realization is a binary number
Yab € {0, 1}, called the decision of classifying a as b

e For any b € B and any v € V, let O, be a random variable whose realization is a real
number 6y, € R, called a parameter

e Let Z be a random variable whose realization is a subset z C {0,1}#*5. For multiple label
classification, we are interested in z = ), the set of the characteristic functions of all maps
from A to B.

Conditional independence assumptions

We assume a probability distribution that factorizes according to Bayesian net depicted below.

Xab

ebv O O Yab

veV a€A

be B

Factorization

These conditional independence assumptions imply the following factorizations:

o Firstly:

P(Xv Y, 27@) = P(Z | Y) H P(Yab | Xabvg) H P(ebv) H P(Xab)

(a,b)eAxB (bv)eBXV (a,b)eAxXB
(5.8)
e Secondly:
_ P(X,Y,Z,0)

_ P(Z|Y)P(Y | X,0) P(X) P(O)
- P(Z|X,Y)P(X,Y)
P(Z|Y)P(Y | X,0) P(X) P(©)
- P(Z|Y)P(X,Y)
_ P(Y | X,0)P(X)P(©)
P(X,Y)
x P(Y | X,0) P(©)
= J] POwl|Xw.©) J] P(Ow) (5.9)

(a,b)eAxB (b,v)eBXV
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e Thirdly,

P(X,Y,Z,©)
P(X,Z,0)
P(Z|Y)P(Y | X,0)P(X) P(©)
- P(X, Z,0)
x P(Z|Y)P(Y | X,0)
=PZ|Y) ][] PalXw©) (5.10)
(a,b)eAXB

PY|X,Z0)=

Forms
Here, we consider:
e The logistic distribution
1

V(a,b) S A X B N pYablxam@(]‘) = m (511)
e A 0 € Rt and the normal distribution:
V(bo) €EBXV: oy, () = ——c /2" (5.12)
’ o700 oV2r
e A uniform distribution on a subset:
AxB 1 ifyez
Vz C {0,1} D pzy(2) i (5.13)
0 otherwise

Note that pzjy ()) is non-zero iff the relation y~'(1) € A x B is a map.

5.2.4 Learning problem

Lemma 4 Estimating mazimally probable parameters 0, given attributes x and decisions y, i.e.,

argmax p@\X,Y(e, z,y)
OERB XV

is identical to the supervised learning problem w.r.t. L, R and X\ such that

VreRVYye{0,1}: L(r,g) = —gr +log(1+2") (5.14)
Vo € O: R(O) = |03 (5.15)

__loge
A= 552 (5.16)

Moreover, this problem separates into |B| independent supervised learning problems, each
w.r.t. parameters in R, with L and X\ as above, and with

Vo' e RV : R(9) = |03 (5.17)
PROOF Analogous to the case of binary classification from Section 3.1, we now obtain:

argimax p@|X,Y(97 o y)
OeRBXV

= argmin Z (—yabfe(:cab) + log (1 + 2f9(”“b))) +
OERPXY( b)eAxB

loge
202

16113 - (5.18)
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Consider the unique 2’ : A x B — RY such that, for any (a,b) € A x B, we have x, = (b, 2,).
Problem (5.18) separates into | B| many la-regularized logistic regression problems, one for each
b € B, because

/ loge
. _ / (Oy. )
Jmin S (vl i) +log (14207000 ) ) + ZE20)3
(a,b)eAXB
. o loge
=, in, > (Z (= a0y, 2) + log (1200200} ) + 22 L)1, ||2>
beB \acA

/ 1
=Y min {3 (<yar (B, ly) +log (142070 ) ) 4+ 22110, 3
00 €RY a€A

beB

5.2.5 Inference problem

Lemma 5 For any constrained data as defined above, any 6 € RP*V and any §: A x B — {0,1},
4 18 a solution to the inference problem

min > L(fo(wab): Yab) (5.19)

ey
Y (a,b)eAxB

iff there exists an ¢ : A — B such that

Vae A () € max (6., aly) (5.20)
and
V(a,b) e AXB: gap=1&¢(a)=0 . (5.21)
Proor

Z L(fe(xab)ayab)

(a,b)eAxB

= Y (L(fo(man): 1) Yab + L(fo(ap), 0) (1 = Yap))
(a,b)eAXB

= Y (L(folma):1) — L(fo(xab), 0)) Yap + const.
(a,b)eAXB

= Y (—fo(wab)) yar by (5.14)
(a,b)eAXB

= Z (= (b, x;b» Yab Tap = (b, 33:11))
(a,b)eAXB

- Z Z eb ’ ab yab

acAbeB

5.2.6 Inference algorithm

The inference problem is solved by solving (5.20) independently for each a € A. The time complexity
is O(|A[[B][V]).
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