

Computer Vision I

Jannik Presberger, David Stein, Bjoern Andres

Machine Learning for Computer Vision
TU Dresden

<https://mlcv.cs.tu-dresden.de/courses/25-winter/cv1/>

Winter Term 2025/2026

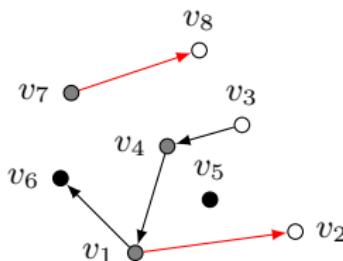
Contents

- ▶ Maximum *st*-flow problem
- ▶ Residual capacities and augmenting paths
- ▶ Minimum *st*-cut problem
- ▶ Maximum *st*-flow/minimum *st*-cut theorem
- ▶ Ford-Fulkerson algorithm

Excursus: Maximum st -flow problem and minimum st -cut problem

For any directed graph (V, E) , any $U \subseteq V$ and any $W \subseteq V$ let

$$UW := \{uv \in E \mid u \in U \wedge w \in W\} .$$



$$U = \{v_1, v_4, v_7\} \quad W = \{v_2, v_3, v_8\} \quad UW = \{v_1v_2, v_7v_8\}$$

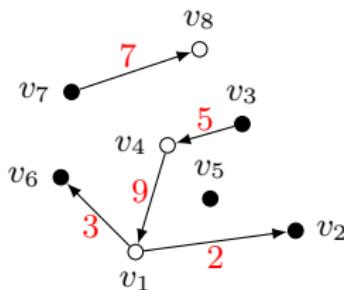
Definition 1. For any directed graph (V, E) and any $f \in \mathbb{N}_0^E$, the maps $\varphi^+, \varphi^-, \varphi: 2^V \rightarrow \mathbb{Z}$ such that

$$\forall U \in 2^V \quad \varphi_U^+ = \sum_{uv \in UU^c} f_{uv} \quad (1)$$

$$\varphi_U^- = \sum_{vu \in U^cU} f_{vu} \quad (2)$$

$$\varphi_U = \varphi_U^+ - \varphi_U^- \quad (3)$$

are called the **outflux**, **influx** and **flux** in (V, E) wrt. f .



$$U = \{v_1, v_4, v_8\}$$

$$\varphi_U^+ = 3 + 2$$

$$\varphi_U^- = 7 + 5$$

$$\varphi_U = -7$$

Excursus: Maximum *st*-flow problem and minimum *st*-cut problem

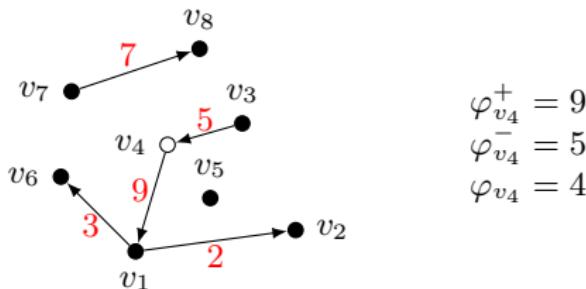
For any $u \in V$,

$$\varphi_u^+ := \varphi_{\{u\}}^+$$

$$\varphi_u^- := \varphi_{\{u\}}^-$$

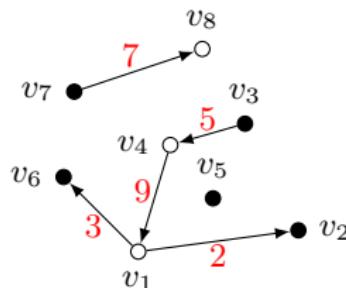
$$\varphi_u := \varphi_{\{u\}}$$

are called the **outflux**, **influx** and **flux** of u in (V, E) wrt. f .



Lemma 1. For any directed graph (V, E) , any $f \in \mathbb{N}_0^E$ and any $U \subseteq V$

$$\varphi_U = \sum_{u \in U} \varphi_u . \quad (4)$$



Proof.

$$\begin{aligned}
 \varphi_U &= \sum_{uv \in UU^c} f_{uv} - \sum_{vu \in U^cU} f_{vu} \\
 &= \left(\sum_{uv \in UV} f_{uv} - \sum_{uu' \in UU} f_{uu'} \right) - \left(\sum_{vu \in VU} f_{vu} - \sum_{u'u \in UU} f_{u'u} \right) \\
 &= \sum_{uv \in UV} f_{uv} - \sum_{vu \in VU} f_{vu} \\
 &= \sum_{u \in U} \left(\sum_{vw \in \{u\}\{u\}^c} f_{vw} - \sum_{vw \in \{u\}^c\{u\}} f_{vw} \right) \\
 &= \sum_{u \in U} \varphi_u .
 \end{aligned}$$

□

Definition 2. A 5-tuple $N = (V, E, s, t, c)$ is called a **network** iff (V, E) is a symmetric directed graph and $s \in V$ and $t \in V$ and $s \neq t$ and $c \in \mathbb{N}_0^E$.

The nodes s and t are called the **source** and the **sink** of N , respectively.

For any edge e , the number c_e is called the **capacity** of e in N .

Definition 3. A map $f \in \mathbb{N}_0^E$ is called an ***st*-preflow** in a network $N = (V, E, s, t, c)$ iff

$$\forall e \in E: \quad 0 \leq f_e \leq c_e \quad (5)$$

$$\forall v \in V \setminus \{s\}: \quad \varphi_v \leq 0 \quad . \quad (6)$$

An *st*-preflow f in N is called an ***st*-flow** in N iff, in addition,

$$\forall v \in V \setminus \{s, t\}: \quad \varphi_v = 0 \quad . \quad (7)$$

Definition 4. The instance of the **maximum *st*-flow problem** wrt. a network $N = (V, E, s, t, c)$ is to

$$\max_{f \in \mathbb{N}_0^E} \quad \sum_{sv \in E} f_{sv} - \sum_{vs \in E} f_{vs} \quad (8)$$

subject to $\forall e \in E: \quad 0 \leq f_e \leq c_e$ (9)

$$\forall v \in V \setminus \{s, t\}: \quad \sum_{vw \in E} f_{vw} = \sum_{uv \in E} f_{uv} . \quad (10)$$

Note:

$$\sum_{sv \in E} f_{sv} - \sum_{vs \in E} f_{vs} = \varphi_s$$

Definition 5. For any network $N = (V, E, s, t, c)$ and any *st*-preflow f in N , let $c' \in \mathbb{N}_0^E$ such that

$$\forall vw \in E: \quad c'_{vw} := c_{vw} - f_{vw} + f_{wv} . \quad (11)$$

For any edge e of N , the number c'_e is called the **residual capacity** of e wrt. f .

Lemma 2. Let $N = (V, E, s, t, c)$ be a network and f an st -preflow in N .

Let $n \in \mathbb{N}$, and let $p = (v_0 w_0, \dots, v_{n-1} w_{n-1})$ be a path in (V, E) from s to t such that $\forall j \in n: c'_{v_j w_j} > 0$. (Such a path is called an **augmenting path** of f in N).

Let

$$\delta := \min_{j \in n} c'_{v_j w_j} . \quad (12)$$

Then, the $f' \in \mathbb{N}_0^E$ such that

$$\forall vw \in E : \quad f'_{vw} = \begin{cases} f_{vw} + \delta & \text{if } vw \in p(n) \\ f_{vw} & \text{otherwise} \end{cases} \quad (13)$$

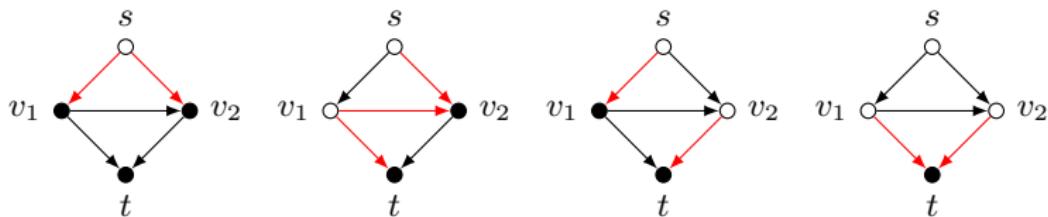
is an st -preflow in N wrt. which

$$\varphi'_s = \varphi_s + \delta . \quad (14)$$

Moreover, if f is an st -flow in N , so is f' .

Definition 6. Let (V, E) be a directed graph. Let $s \in V$ and $t \in V$ and $s \neq t$.

- ▶ $X \subseteq V$ is called an ***st*-cutset** of (V, E) iff $s \in X$ and $t \notin X$.
- ▶ $Y \subseteq E$ is called an ***st*-cut** of (V, E) iff there exists an *st*-cutset X such that $Y = \{vw \in E | v \in X \wedge w \notin X\}$.



Definition 7. The instance of the **minimum *st*-cut problem** wrt. a network $N = (V, E, s, t, c)$ is to

$$\min_{x \in \{0,1\}^V} \sum_{vw \in E} c_{vw} x_v (1 - x_w) \quad (15)$$

$$\text{subject to } x_s = 1 \quad (16)$$

$$x_t = 0 \quad (17)$$

Note: With $X := \{v \in V \mid x_v = 1\}$, we have

$$\sum_{vw \in E} c_{vw} x_v (1 - x_w) = \sum_{vw \in X X^c} c_{vw}$$

Excursus: Maximum st -flow problem and minimum st -cut problem

Lemma 3. For every network $N = (V, E, s, t, c)$, every st -flow f in N , and every st -cutset $X \subseteq V$,

$$\varphi_s \leq \sum_{vw \in X X^c} c_{vw} . \quad (18)$$

Proof.

$$\begin{aligned} \varphi_s &= \sum_{v \in S} \varphi_v && \text{by (7) and } t \notin S \\ &= \varphi_S && \text{by Lemma 1} \\ &\leq \varphi_S^+ && \text{by (2), (3) and } 0 \leq f \\ &= \sum_{vw \in S S^c} f_{vw} && \text{by (1)} \\ &\leq \sum_{vw \in S S^c} c_{vw} && \text{by (5).} \end{aligned}$$

□

Remark 1. Lemma 3 does **not** hold analogously for every st -preflow, because, wrt. an st -preflow, φ_S need not be an upper bound on φ_s .

Theorem 1. For any network $N = (V, E, s, t, c)$ and any st -flow f in N , the following three properties are equivalent

1. There exists an st -cut whose capacity is equal to φ_s .
2. The st -flow f is optimal, i.e., a solution of (8)–(10).
3. No augmenting path of f exists.

Proof.

(1) implies (2) by virtue of Lemma 3.

(2) implies (3) by virtue of Lemma 2.

We prove that (3) implies (1):

- ▶ Let f be an st -flow such that no augmenting path exists.
- ▶ Let S be the set of all nodes reachable in N from s by a path with positive residual capacities. Let S also include s itself.
- ▶ Then, $t \notin S$ (otherwise, an augmenting path would exist).
- ▶ Moreover, ...

- Moreover,

$$\begin{aligned}
 \varphi_s &= \sum_{v \in S} \varphi_v && \text{by (7) and } t \notin S \\
 &= \varphi_S && \text{by Lemma 1} \\
 &= \sum_{vw \in SS^c} f_{vw} - \sum_{vw \in S^c S} f_{vw} && \text{by definition of } \varphi_S \\
 &= \sum_{vw \in SS^c} c_{vw} && \text{by the arguments below.}
 \end{aligned}$$

- For any $vw \in SS^c$, we have $f_{vw} = c_{vw}$ (otherwise, the contradiction $w \in S$ follows by construction of S and by definition of residual capacities).
- For any $vw \in S^c S$, we have $f_{vw} = 0$ (otherwise, the contradiction $v \in S$ follows by construction of S and by definition of residual capacities).

□

Algorithm 1. (Ford and Fulkerson, 1956)

Input: Network $N = (V, E, s, t, c)$

Output: $f : E \rightarrow \mathbb{N}_0$

for all $vw \in E$

$$f_{vw} := 0$$

while $\exists n \in \mathbb{N} \exists$ augmenting path $p = (v_0 w_0, \dots, v_{n-1} w_{n-1})$ of f

$$\delta := \min_{j \in n} c'_{v_j w_j}$$

for all $vw \in E$

$$f_{vw} := \begin{cases} f_{vw} + \delta & \text{if } vw \in p(n) \\ f_{vw} & \text{otherwise} \end{cases}$$

Theorem 2. Algorithm 1 terminates. The output f is a maximum st -flow in N .

Proof. Termination.

- ▶ For every augmenting path processed, φ_s increases by at least 1.
- ▶ Moreover,

$$\varphi_s \leq \sum_{vw \in \{s\}\{s\}^c} c_{vw} \quad (\text{by Lemma 3})$$

- ▶ Therefore, only finitely many augmenting paths are processed.
- ▶ Thus, the algorithm terminates.

Optimality:

- ▶ Throughout the execution, f is an st -flow in N .
- ▶ When the algorithm terminates, no augmenting path exists.
- ▶ Thus, f is a maximum st -flow in N (by Theorem 1).