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Partial optimality and machine learning

Contents. In this part of the course, we discuss a technique for solving
combinatorial optimization problems partially and efficiently: the construction of
improving maps.
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Partial optimality and machine learning — Mathematical foundations

Definition 1. Let Y # & finite, ¢: Y - Rando: Y - Y. Wecall o
improving for the problem min{p(y) |y € Y} iff poo < .

Lemma 1. Let Y # & finite and ¢: Y — R. Let 0: Y — Y improving for the
problem min{p(y) [y € Y} If Q CY and o(Y) C @, there exists a solution
y* such that y* € Q.

Proof. A solution 3’ exists because Y is non-empty and finite. y* := o (y’ )
also a solution because o is improving. Moreover, y* € @ because o(Y) C Q
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Partial optimality and machine learning — Mathematical foundations

Corollary 1. Let S # & finite, Y C {0,1}° and ¢: Y = R. Let s € S and
g €{0,1}. If 0: Y — Y is improving for the problem min{y(y) | y € Y} such
that Vy € Y: o(y)s = g, there exists a solution y* such that y; = q.

Remark 1. If we can construct such an improving map, we can fix the variable
ys to ¢ without compromising optimality.
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Contents. In this part of the course, we construct improving maps for the clique
partition problem, an inference problem for clustering.

References.

» Stein D., Di Gregorio S. and Andres B. Partial Optimality in Cubic
Correlation Clustering. ICML 2023

» Lange J.-H., Andres B. and Swoboda P. Combinatorial persistency criteria
for multicut and max-cut. CVPR 2019

» Lange J.-H., Karrenbauer A. and Andres B. Partial Optimality and Fast
Lower Bounds for Weighted Correlation Clustering. ICML 2018

» Alush, A. and Goldberger, J. Ensemble segmentation using efficient integer
linear programming. TPAMI, 34(10):1966-1977, 2012
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Partial optimality and machine learning — Clustering
Definition 2. For any A # & finite, any c: (g‘) - R,
va={y: (3) > {0, 1}‘VaeAVbeA\{a}VceA\{a b):
Yab + Ype — 1 < yac} (1)
and ¢c: Ya = R:y— (c,y),

min{ec(y) |y € Ya} (2)

is called the instance of the (clique) partition problem wrt. A and ¢, which we
abbreviate as CPP(A4, ¢).

Example 1.
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Partial optimality and machine learning — Clustering

For any set A and any U C A, we write

BU::{{u,a}e(‘;HueU/\ag‘;U} . (3)
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Partial optimality and machine learning — Clustering

Definition 3. Let A # O finite and U C A.

» The elementary cut map wrt. U is the oy : Y4 — Y4 such that
Yy € Ya V¥{a,b} € (3):

0 if {a,b} € OU
o0 (W)as = { te,0) @)
Yab Otherwise
» The elementary join map wrt. U is the o(;: Y4 — Ya such that
Yy € Ya V{a,b} € (5):
1 if{a, b} e (3)
1 ifacUANFueU: yup =1
1 fbeUNTuEU: yuo =1
ab = 5
W = G Uy = 1) A (®)

FueU:yw=1)
Yab Otherwise

Remark 2. oy is well-defined, i.e. oy (Ya) C Ya. oy is well-defined. of; o oy is
well-defined.

8/45



Partial optimality and machine learning — Clustering

To begin with, we establish a trivial partial optimality condition for the CPP:

Lemma 2. Let A # & finite and c: (‘;) — R. If there exists U C A such that
V{a,b} €U: 0<ca , (6)
there exists a solution y* to CPP(A, ¢) such that

V{a,b} € 0U: wyo, =0 . )
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Partial optimality and machine learning — Clustering

Proof. For any y € Ya, ou(y) satisfies (7). Moreover, oy is improving for

CPP(A, c) because for any y € Y4 and ' := ou(y):

@c(y/) - cpc(y) = Z Cab y;b - Z

{abe(3) {abye(3)

= > car(Yab — Yar)

{asb}e(3)

= > can(0—yar)

{a,b}coU
= - Z Cab Yab
{a,b}edU
(6)
<0.

The assertion follows by Lemma 1.

Cab Yab

(8)

(9)

(10)

(11)

(12)
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Partial optimality and machine learning — Clustering

For any » € R, we write

VH:_{T ifr>0

0 otherwise

V]r={0 ifr>0

—r otherwise

(13)

(14)
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Partial optimality and machine learning — Clustering

Next, we establish a less trivial partial optimality condition for the CPP:

Proposition 1. Let A # @ finite and c: (’;) — R. If there exist U C A and
{u,v} € U such that

[Cab]— < cuv , (15)
{a,b}coU\{{u,v}}

there exists a solution y* to CPP(A, ¢) such that y;,, = 0.
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Partial optimality and machine learning — Clustering
Proof. Let £: Y4 — Y4 such that for all y € Ya:

s@)—{y oo =0 (16)

ou(y) otherwise

For any y € Ya and ¢’ := £(y), we have g, = 0.
Moreover, ¢ is improving for CPP (A, c¢) because for all y € Ya and y' := £(y),
the following holds: If yos = 0 then . (y') — we(y) = pe(y) — @e(y) =0
Otherwise:
W) =) = D Cab(Yab — Yab) (17)
{a.}e(3)
= Cun(0— 1) + > cab(0—yar)  (18)

{a,b}€0U\{{u,v}}

= —Cuv — Z Cab Yab (19)
{a,b}cdU\{{u,v}}

< —Cuw + > [Cab] - (20)
{a,b}coU\{{u,v}}

(15)

<0. (21)

The assertion follows by Lemma 1.
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Partial optimality and machine learning — Clustering

Next, we establish a non-trivial partial optimality condition for the CPP:

Lemma 3. Let A # o finite and c: (‘;‘) — R. If there exist U C A such that

[Cua]7 S i min Z (761“’)(1 - yuv) ) (22)
{u,a}eoU {s,tye(§) veYu] ”
s Yst=0 {u,v}G(Q)

there exists a solution y* to CPP(A, c) such that V{u,v} € (}): i, = L.
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Partial optimality and machine learning — Clustering
Proof. Let £: Y4 — Y4 such that for all y € Ya:

€(y) = {(U& ooy)(y) if Hu,v} e (g) Yuo = 0 . (23)

Y otherwise

For any y € Ya, y' := &(y) and all {u,v} € (¥), we have y,, = 1.

Moreover, ¢ is improving because for all y € Y4 and y' := £(y), the following
condition holds: If V{u,v} € (g) Yuw = 1 then

@e(y') = ¢c(y) = pe(y) — pe(y) = 0 < 0. Otherwise:

‘Pc(y,) - SDC(y) = Z Cua(o - yua) + Z Cuv(l - yuv) (24)

{u,a}€dU {u,v}E(g)

< D0 lewa- o max max o 37 cun(l—yu)
{u,a}€dU {s,t}€(2) Zést:U() {u,v}e(g)

(25)
< Z [Cua]- — min  min Z (—cuv) (1 — Yuv)

U
{u,a}ecdU {S‘t}e(Z) foY:U()‘ {u’v}e(g)
(26)
(22)
<0. (27)

The assertion follows by Lemma 1.
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Partial optimality and machine learning — Clustering

Even if set U C A is given, Condition (22) of Lemma 3 cannot be checked
efficiently: In general, the calculation of

min min (7Cuv)(1 - yuu) (28)
S v EY
{: ,t}e(z)zst:%l {urre(Y)

requires solving CPPs with the additional constraint ys; = 0.

However, in the special case where V{u,v} € (g) cuv < 0, these problems
become minimum st-cut problems that can be solved efficiently.

Hence, an idea toward applying Lemma 3 algorithmically is to work in two steps:

1. to heuristically search for a set U such that

» inside U, all costs are non-positive
» on the boundary of U, the sum of the negative costs is large.

2. to efficiently test (22) from Lemma 3 for these sets U.
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Partial optimality and machine learning — Graphical model inference

Contents: In this part of the course, we discuss partial optimality in the
graphical model inference problem.

References:

» E. Boros, P. L. Hammer, X. Sun: Network flows and minimization of
quadratic pseudo-Boolean functions. RUTCOR Research Report 17-1991

» E. Boros, P. L. Hammer: Pseudo-Boolean optimization. Discrete Applied
Mathematics 123(1-3): 155-225 (2002)

» E. Boros, P. L. Hammer, R. Sun, G. Tavares: A max-flow approach to
improved lower bounds for quadratic unconstrained binary optimization
(QUBO). Discrete Optimization 5(2): 501-529 (2008)
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Partial optimality and machine learning — Graphical model inference

Definition 4. For any n € N, any d € {0,...,n}, let

d
Jna = (My™) Cpa =R (29)

m=0

and call any ¢ € C),4 an n-variate multi-linear polynomial form of degree at
most d.

Example. For n = d = 2, we have

2

J = | (02

= ()0 () U (4)
={oru{{i} 2 u{{12}}
={o, {1}, {2}, {1,2}}
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Partial optimality and machine learning — Graphical model inference

Definition 5. For any f: A — B and any n € N, f is called an n-variate
pseudo-Boolean function (PBF) iff A = {0,1}" and B C R. For any
f: A— B, fis called a PBF iff f is an n-variate PBF for some n € N.

Definition 6. For any n € N, any d € {0,...,n} and any ¢ € Cpg4, the function
fc defined below is called the PBF defined by c.

fer {0,1}" > R: xHZ Z cJij (30)

m=0ge (ot ded

Example. For any ¢ € Cs2, f. is such that for all z € {0, 1}2:

Je(w1,22) = co + cp1y@1 + cpa3 @2 + e 32172
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Partial optimality and machine learning — Graphical model inference

Lemma 4. Every PBF has a unique multi-linear polynomial form. More precisely,

YneN Vf:{0,1}" >R Jc€Cnn f=Ffo. (31)

Example. For n = d =2 and any f : {0,1}? — R, the existence of a ¢ € Ca
such that f = f. means

vz € {0, 1}2: f(r1,22) = co + cq1yx1 + coyx2 + cp1 23122 -

Explicitly,
f(ov 0) = Co
f(]-vo) = Co tcq1}
f(0,1) =co + ci2y
f(L,1) =co +cay +cray +eaoy -

In this example, a suitable ¢ exists and is defined uniquely by f.
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Partial optimality and machine learning — Graphical model inference

Proof. For any J C {1,...,n}, let 27 € {0,1}™ such that for all j € {1,...,n}:

; {1 ifjed

33]' = .
0 otherwise

Now,

vz € {0,1}": f(z)= Z cJij

JC{1,...,n} j€J

is written equivalently as

f(@?) = co
V4@ f@))=cs+ Zc(]z .
JcJ
Thus, ¢ is defined uniquely (by induction over the cardinality of J). d
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Partial optimality and machine learning — Graphical model inference

Definition 7. For any n € N and any d € {0,...,n}, let
Foo:={f:{0,1}" >R | 3c€Cpha: [=fc} (32)

and call any f € F,,q4 an n-variate PBF of degree at most d. In addition, call
any f € F,2 a quadratic PBF (QPBF).

Remark 3. For any n € N, F,, is the set of all n-variate PBFs (by Lemma 4).
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Partial optimality and machine learning — Graphical model inference

Definition 8.
» For any n € Nand any f:{0,1}" — R, call

min {f(z) | z € {0,1}"} (33)

the instance of the pseudo-boolean optimization (PBO) problem wrt. f.
» For any n € N and any f € F,3, call

min {f(z) | z € {0,1}"} (34)

the instance of the quadratic pseudo-boolean optimization (QPBO)
problem wrt. f.

Is QPBO less complex than PBO?
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Partial optimality and machine learning — Graphical model inference

Definition 9. For any n € N and any ¢ € Cy,,,, define the size of ¢ as

size(c) := P (35)

JC{1,...,n}: c;#0
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Partial optimality and machine learning — Graphical model inference

Lemma 5. For any z,y,z € {0,1}:

2=y <& zy—2xz—2yz+32=0,
z#xy & xy—2xz—2yz+32>0 .

Proof. By verifying equivalence for all eight cases.

(36)
(37)
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Partial optimality and machine learning — Graphical model inference

Algorithm 1 (Boros and Hammer 2001).
Input: ¢ € Cyp,
Output: ¢’ € Co
M:=142% 00 nlcs]
m:i=n
c"i=c
while there exists a J C {1,...,n} such that |J| > 2 and ¢ # 0
Choose j, k € J such that j # k

Cm+1 = cm

m+1 . m—+1
gy = Sy T M
m—+

Cir{’ﬂﬂ} = —2M

Cllom41} = —2M

C7’n+1 —

{m+1}
for all {j,k} C J' C {1,...,n} such that ¢;*' #0
m—+1 . m-+1

Cr— i kyu{m+1y *= Cr
CS”,H =0

m:=m-+1

=™

26/45



Partial optimality and machine learning — Graphical model inference

Theorem 1.
» Algorithm 1 terminates in polynomial time in size(c).
> size(c') is polynomially bounded by size(c).
» The multi-linear quadratic form ¢’ is such that V2 € R™:

Z € argmin f.(z)
ze{0,1}m

= 33 €{0,1}™ <:i'{1 ,,,,, n} =21,....ny A2 € argmin fu (w'))
o' €{0,1}m

(38)
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Partial optimality and machine learning — Graphical model inference

Proof. The algorithm replaces the occurrence of zjxi by 1 and adds the
form M(z;z6 — 22;Zm+1 — 2CkTm+1 + 3Tm1).

> If Tm+1 = TjTk,

fm+1(zl,‘1,...,1rm+1) — fm(xl,...7:l‘n) S I/g{l(?)l(}" fm(;r/) < M/2 .

> |f Tm+1 #l‘jl‘k,
fm+1(x17~~~7$m+1) ZM/Q

(by Lemma 5 and by definition of M).

For every iteration m,
{J {1, nd [ > 2A T # 0} < [{J C{L,...,n}[|J]| > 2 Al # 0}

which proves the complexity claims. (]
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Partial optimality and machine learning — Graphical model inference

Summary:
» Every PBF has a unique multi-linear polynomial form.
» PBO is polynomially reducible to QPBO.
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Partial optimality and machine learning — Graphical model inference

Definition 10. For any n € N and any d € {0, ...,n}, let
Kh={(K"K°) | K" K°C{l,....n} AK'nK’ =@ A|K'|+ |K°| = d}
J:d = LdJ K,Tm
m=0
Cly={c: T = RIVj€ I\ {(2,2)}: 0< ;)

and call any c € Cid an n-variate posiform of degree at most d.

Example. For n = d = 2,

Jn= {(2,9)}
u{ {1},9), (2,{1}), ({2},2), (@,{2}) }
Ui {12} 9), ({13:{2}), ({2}, {1}), (2,{1,2}) }
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Partial optimality and machine learning — Graphical model inference

Definition 11. For any n € N, any d € {0,...,n} and any c € C;,
fe :{0,1}" — R such that

vz € {0,1}" fe(z) = Z Cy150 H xj H (1—aj%) (39)

(J1,0%egt,  gest jedo

is called the PBF defined by c.

Example. For any c € C3, f.: {0,1}* — R is such that Vx € {0,1}*:

f(@) = coo
+ciiyet1 + cop1y(1 — 1) + craye2 + Cop2) (1 — 22)
+ cq1,210T122 + cqayr2p21 (1 — 22) + o3y (1 — 1) 22
+egpo (I —2)(1 —x2) .
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Partial optimality and machine learning — Graphical model inference

Definition 12. For any n € N and any f: {0,1}" — R, the posiform defined by
Ve e {0,1}": Ki:={je{l,...,n}z; =1}
Ky :={j€{l,...,n}z; =0}
and

J={@o}u |J {&LE)}

ze{0,1}™
and ¢: J — R such that
Cog = xer{%l,rll}" f(m)

Vo € {0,1}"  cxigo = f(x) — con

is called min-term posiform of f.
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Partial optimality and machine learning — Graphical model inference

Lemma 6. For any n € N and any f : {0,1}" — R, the min-term posiform c of
f is such that f. = f.

Corollary 2. For any n € N and any f: {0,1}" — R, there exists a posiform
c € C;f,, such that f. = f.
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Partial optimality and machine learning — Graphical model inference

Proof. Let n € N and f: {0,1}" — R. Moreover, let ¢ : J — R the min-term
posiform of f.

c is a posiform (by definition).
Let g : {0,1}" — R be the PBF defined by this posiform.
Then, for any z € {0,1}",

(J',J%) € {(2,92), (Ks, KD} € T
are the only elements of J for which

0# [[z JTO-2)=1.

jeJt j'eJo
Thus,

vz € {0,1}" 9(z) = coo + cx1K0
=coo + f(z) — coz (by definition of ¢)
= f(z) .
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Partial optimality and machine learning — Graphical model inference

Remark 4. Unlike multi-linear polynomial forms, posiforms of PBFs need not be
unique, e.g., 1 = z122 + x1(1 — x2).

Definition 13. For any n € N, any f:{0,1}" - R and any d € {0,...,n}, let

Cralf) = {Cec:fd | fe=f} - (40)

Remark 5. For any n € N and any f: {0,1}" — R, C;},,(f) contains at least
the min-term posiform of f.

35/45



Partial optimality and machine learning — Graphical model inference

Lemma 7.

VneN Vf:{0,1}" =R VYece Cl.(f) Vzec{0,1}": coo < f(z) .

Proof. By definition, we have, for all z € {0,1}",

d
Z Z CK1 KO H z; H (1—z%)

flz) =
m=0 (K1 KO)e K\, jEK1  j'eKO
d
:C;a@JrZ Z Cx1 K0 ij H(lfx;-),
m=1 (g1 KO)eK;},, jekl  j'eKO

and all coefficients cx1 0 in the second sum are non-negative.
Therefore, the second sum is non-negative.
Thus,

Vr € {O, 1}77. f(ZL’) 2 Cooz .
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Partial optimality and machine learning — Graphical model inference

Definition 14. For any posiform ¢ : J — R, a pair (S, y) such that
SCA{l,...,n}and y: S — {0,1} is called a contractor of c iff

V(") e J: J'nS=2 A J'NS=09)
vV(3jeJ' nS y;=0)
v(EjeJ’ns yi=1). (41)
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Partial optimality and machine learning — Graphical model inference

Theorem 2 (partial optimality). For any n € N, any f: {0,1}" — R, any
posiform ¢ € C;%, (f) and any contractor (S,y) of ¢, there exists a solution z* to
the problem min {f(z) | € {0,1}"} such that

VieS: aj=vy; . (42)
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Partial optimality and machine learning — Graphical model inference

Proof. Let ogy : {0,1}" — {0,1}" such that Vz € {0,1}" Vj € {1,...,n}:

USy<x>j:{yf Tres (43)

x; otherwise
Let J5 :={(J', ) e Jit, | J'NS=J°NS =@z} and J® :=J\ J°.
Now, Vz € {0,1}™:

f(x):ZCJlJO Hl"j H (1—a5)+ ZCJlJO ij H (1—af) .

(J1,J%€gS  jeJt  je€J0 (J1,J9egs  jeJt  jeJo

=:f5(x) =:f5(x)

Furthermore, Yz € {0,1}™:

Fosy(x) =0 (by definition)
0< f(x) (because (@, @) & J°)
Fi(osy(@) = f5() (by definition) .
Adding the lhs. and rhs. shows that osy is improving for the problem
min {f(z) | x € {0,1}"}. O
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Partial optimality and machine learning — Graphical model inference

Summary:
» Every PBF has a posiform

» The posiform of a PBF need not be unique
» For every PBF f and every posiform c of f

» cz is a lower bound on the minimum of f
» partial optimality holds at any contractor of ¢
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Partial optimality and machine learning — Graphical model inference

For any n € N, consider n-variate quadratic forms, i.e.

» any multi-linear polynomial form ¢ € Cy.2, and f, i.e. for all z € {0,1}™:

fe@)=co+ Y e+ > C{5R}TiTh

» any posiform ¢’ € C7,, and f., i.e. for all z € {0,1}™
y

n21
fé/ (:E) = C:ZQ + Z (cf{j},a:rj 4+ C/z{]}(l — l’J))
je{l,....,n}
+ > (memime + iy (1 - ax)
{j,k}G({L‘;n})

+ iy el — 25) + gy (1 — 25) (1 — z))
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Partial optimality and machine learning — Graphical model inference

Lemma 8. For any n € N, any QPBF f: {0,1}" — R, the ¢ € Cy2 such that
fe=fandany ¢ € CL(f):

n
Co = C/gg + ZC;}{]} + Z Cl@{jyk}
Jj=1 {j,k}e({l"‘Q""’})

. / / / !
Vie{l....on}: ey = e — oy + Y (Sl — o)
ke (L)

. 1,...,n . 7 ’ ’ ’
Vi kY e (™) egry = umye + Cotay — Uy — S

Proof. Expansion of the posiform ¢’ yields a quadratic multi-linear polynomial
form. Comparison with c yields the conditions stated in the Lemma. d
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Partial optimality and machine learning — Graphical model inference

Definition 15 (Complementation). For any n € N and any QPBF
f:{0,1}" — R, the real number max {cy4 | ¢ € C;5,(f)} is called the floor
dual of f.

Corollary 3 (of Lemma 8). For any n € N and any QPBF f:{0,1}" — R, the
floor dual is the value of an optimal solution to the linear program

n
/ /
max Co — Zcﬁ{j} - § : Co{j,k}
j=1

¢ JT,oR
n2 {j’k}e({l,..z.,n})

subject to  Vj € {1,...,n}: ¢y = Cye — oy + 2 Sy — Coginy)
ke{1,..., n}—{j}
Vi kY e (™) clmy = e + Copiny — Chrmy — S
vJ e Jh —{(2,2)}: 0< ¢y .
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Partial optimality and machine learning — Graphical model inference

Summary:

» For any PBF, a quadratic posiform with maximum floor dual bound cg
can be found by solving a linear program.
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