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Partial optimality and machine learning

Contents. In this part of the course, we discuss a technique for solving
combinatorial optimization problems partially and efficiently : the construction of
improving maps.
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Partial optimality and machine learning – Mathematical foundations

Definition 1. Let Y ̸= ∅ finite, φ : Y → R and σ : Y → Y . We call σ
improving for the problem min{φ(y) | y ∈ Y } iff φ ◦ σ ≤ φ.

Lemma 1. Let Y ̸= ∅ finite and φ : Y → R. Let σ : Y → Y improving for the
problem min{φ(y) | y ∈ Y }. If Q ⊆ Y and σ(Y ) ⊆ Q, there exists a solution
y∗ such that y∗ ∈ Q.

Proof. A solution y′ exists because Y is non-empty and finite. y∗ := σ(y′) is
also a solution because σ is improving. Moreover, y∗ ∈ Q because σ(Y ) ⊆ Q. □
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Partial optimality and machine learning – Mathematical foundations

Corollary 1. Let S ̸= ∅ finite, Y ⊆ {0, 1}S and φ : Y → R. Let s ∈ S and
q ∈ {0, 1}. If σ : Y → Y is improving for the problem min{φ(y) | y ∈ Y } such
that ∀y ∈ Y : σ(y)s = q, there exists a solution y∗ such that y∗

s = q.

Remark 1. If we can construct such an improving map, we can fix the variable
y∗
s to q without compromising optimality.
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Contents. In this part of the course, we construct improving maps for the clique
partition problem, an inference problem for clustering.

References.

▶ Stein D., Di Gregorio S. and Andres B. Partial Optimality in Cubic
Correlation Clustering. ICML 2023

▶ Lange J.-H., Andres B. and Swoboda P. Combinatorial persistency criteria
for multicut and max-cut. CVPR 2019

▶ Lange J.-H., Karrenbauer A. and Andres B. Partial Optimality and Fast
Lower Bounds for Weighted Correlation Clustering. ICML 2018

▶ Alush, A. and Goldberger, J. Ensemble segmentation using efficient integer
linear programming. TPAMI, 34(10):1966–1977, 2012
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Partial optimality and machine learning – Clustering

Definition 2. For any A ̸= ∅ finite, any c :
(
A
2

)
→ R,

YA :=
{
y :
(
A
2

)
→ {0, 1}

∣∣∣ ∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} :

yab + ybc − 1 ≤ yac
}

(1)

and φc : YA → R : y 7→ ⟨c, y⟩,

min{φc(y) | y ∈ YA} (2)

is called the instance of the (clique) partition problem wrt. A and c, which we
abbreviate as CPP(A, c).

Example 1.

−3

−1 2
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Partial optimality and machine learning – Clustering

For any set A and any U ⊆ A, we write

∂U :=
{
{u, a} ∈

(
A
2

) ∣∣ u ∈ U ∧ a /∈ U
}

. (3)
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Partial optimality and machine learning – Clustering

Definition 3. Let A ̸= ∅ finite and U ⊆ A.

▶ The elementary cut map wrt. U is the σU : YA → YA such that
∀y ∈ YA ∀{a, b} ∈

(
A
2

)
:

σU (y)ab =

{
0 if {a, b} ∈ ∂U

yab otherwise
. (4)

▶ The elementary join map wrt. U is the σ′
U : YA → YA such that

∀y ∈ YA ∀{a, b} ∈
(
A
2

)
:

σ′
U (y)ab =



1 if {a, b} ∈
(
U
2

)
1 if a ∈ U ∧ ∃u ∈ U : yub = 1

1 if b ∈ U ∧ ∃u ∈ U : yua = 1

1 if (∃u ∈ U : yua = 1) ∧
(∃u ∈ U : yub = 1)

yab otherwise

. (5)

Remark 2. σU is well-defined, i.e. σU (YA) ⊆ YA. σ
′
U is well-defined. σ′

U ◦ σU is
well-defined.
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Partial optimality and machine learning – Clustering

To begin with, we establish a trivial partial optimality condition for the CPP:

Lemma 2. Let A ̸= ∅ finite and c :
(
A
2

)
→ R. If there exists U ⊆ A such that

∀{a, b} ∈ ∂U : 0 ≤ cab , (6)

there exists a solution y∗ to CPP(A, c) such that

∀{a, b} ∈ ∂U : y∗
ab = 0 . (7)
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Partial optimality and machine learning – Clustering

Proof. For any y ∈ YA, σU (y) satisfies (7). Moreover, σU is improving for
CPP(A, c) because for any y ∈ YA and y′ := σU (y):

φc(y
′)− φc(y) =

∑
{a,b}∈(A2)

cab y
′
ab −

∑
{a,b}∈(A2)

cab yab (8)

=
∑

{a,b}∈(A2)

cab(y
′
ab − yab) (9)

=
∑

{a,b}∈∂U

cab(0− yab) (10)

= −
∑

{a,b}∈∂U

cab yab (11)

(6)

≤ 0 . (12)

The assertion follows by Lemma 1. □
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Partial optimality and machine learning – Clustering

For any r ∈ R, we write

[r]+ :=

{
r if r ≥ 0

0 otherwise
(13)

[r]− :=

{
0 if r ≥ 0

−r otherwise
. (14)
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Partial optimality and machine learning – Clustering

Next, we establish a less trivial partial optimality condition for the CPP:

Proposition 1. Let A ̸= ∅ finite and c :
(
A
2

)
→ R. If there exist U ⊆ A and

{u, v} ∈ ∂U such that ∑
{a,b}∈∂U\{{u,v}}

[cab]− ≤ cuv , (15)

there exists a solution y∗ to CPP(A, c) such that y∗
uv = 0.
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Partial optimality and machine learning – Clustering

Proof. Let ξ : YA → YA such that for all y ∈ YA:

ξ(y) =

{
y if yuv = 0

σU (y) otherwise
. (16)

For any y ∈ YA and y′ := ξ(y), we have y′
uv = 0.

Moreover, ξ is improving for CPP(A, c) because for all y ∈ YA and y′ := ξ(y),
the following holds: If yab = 0 then φc(y

′)− φc(y) = φc(y)− φc(y) = 0 ≤ 0.
Otherwise:

φc(y
′)− φc(y) =

∑
{a,b}∈(A2)

cab(y
′
ab − yab) (17)

= cuv(0− 1) +
∑

{a,b}∈∂U\{{u,v}}

cab(0− yab) (18)

= −cuv −
∑

{a,b}∈∂U\{{u,v}}

cab yab (19)

≤ −cuv +
∑

{a,b}∈∂U\{{u,v}}

[cab]− (20)

(15)

≤ 0 . (21)

The assertion follows by Lemma 1. □
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Partial optimality and machine learning – Clustering

Next, we establish a non-trivial partial optimality condition for the CPP:

Lemma 3. Let A ̸= ∅ finite and c :
(
A
2

)
→ R. If there exist U ⊆ A such that∑

{u,a}∈∂U

[cua]− ≤ min
{s,t}∈(U2)

min
y∈YU |
yst=0

∑
{u,v}∈(U2)

(−cuv)(1− yuv) , (22)

there exists a solution y∗ to CPP(A, c) such that ∀{u, v} ∈
(
U
2

)
: y∗

uv = 1.
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Partial optimality and machine learning – Clustering

Proof. Let ξ : YA → YA such that for all y ∈ YA:

ξ(y) :=

{
(σ′

U ◦ σU )(y) if ∃{u, v} ∈
(
U
2

)
: yuv = 0

y otherwise
. (23)

For any y ∈ YA, y
′ := ξ(y) and all {u, v} ∈

(
U
2

)
, we have y′

uv = 1.

Moreover, ξ is improving because for all y ∈ YA and y′ := ξ(y), the following
condition holds: If ∀{u, v} ∈

(
U
2

)
: yuv = 1 then

φc(y
′)− φc(y) = φc(y)− φc(y) = 0 ≤ 0. Otherwise:

φc(y
′)− φc(y) =

∑
{u,a}∈∂U

cua(0− yua) +
∑

{u,v}∈(U2)

cuv(1− yuv) (24)

≤
∑

{u,a}∈∂U

[cua]− + max
{s,t}∈(U2)

max
y∈YU |
yst=0

∑
{u,v}∈(U2)

cuv(1− yuv)

(25)

≤
∑

{u,a}∈∂U

[cua]− − min
{s,t}∈(U2)

min
y∈YU |
yst=0

∑
{u,v}∈(U2)

(−cuv)(1− yuv)

(26)

(22)

≤ 0 . (27)

The assertion follows by Lemma 1. □
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Partial optimality and machine learning – Clustering

Even if set U ⊆ A is given, Condition (22) of Lemma 3 cannot be checked
efficiently: In general, the calculation of

min
{s,t}∈(U2)

min
y∈YU |
yst=0

∑
{u,v}∈(U2)

(−cuv)(1− yuv) (28)

requires solving CPPs with the additional constraint yst = 0.

However, in the special case where ∀{u, v} ∈
(
U
2

)
: cuv ≤ 0, these problems

become minimum st-cut problems that can be solved efficiently.

Hence, an idea toward applying Lemma 3 algorithmically is to work in two steps:

1. to heuristically search for a set U such that
▶ inside U , all costs are non-positive
▶ on the boundary of U , the sum of the negative costs is large.

2. to efficiently test (22) from Lemma 3 for these sets U .
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Partial optimality and machine learning – Graphical model inference

Contents: In this part of the course, we discuss partial optimality in the
graphical model inference problem.

References:

▶ E. Boros, P. L. Hammer, X. Sun: Network flows and minimization of
quadratic pseudo-Boolean functions. RUTCOR Research Report 17-1991

▶ E. Boros, P. L. Hammer: Pseudo-Boolean optimization. Discrete Applied
Mathematics 123(1–3): 155–225 (2002)

▶ E. Boros, P. L. Hammer, R. Sun, G. Tavares: A max-flow approach to
improved lower bounds for quadratic unconstrained binary optimization
(QUBO). Discrete Optimization 5(2): 501–529 (2008)
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Partial optimality and machine learning – Graphical model inference

Definition 4. For any n ∈ N, any d ∈ {0, . . . , n}, let

Jnd :=

d⋃
m=0

({1,...,n}
d

)
Cnd := RJnd (29)

and call any c ∈ Cnd an n-variate multi-linear polynomial form of degree at
most d.

Example. For n = d = 2, we have

J22 =

2⋃
m=0

({1,2}
m

)
=
({1,2}

0

)
∪
({1,2}

1

)
∪
({1,2}

2

)
= {∅} ∪ {{1}, {2}} ∪ {{1, 2}}
= {∅, {1}, {2}, {1, 2}}
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Partial optimality and machine learning – Graphical model inference

Definition 5. For any f : A → B and any n ∈ N, f is called an n-variate
pseudo-Boolean function (PBF) iff A = {0, 1}n and B ⊆ R. For any
f : A → B, f is called a PBF iff f is an n-variate PBF for some n ∈ N.

Definition 6. For any n ∈ N, any d ∈ {0, . . . , n} and any c ∈ Cnd, the function
fc defined below is called the PBF defined by c.

fc : {0, 1}n → R : x 7→
d∑

m=0

∑
J∈({1,...,n}

m )

cJ
∏
j∈J

xj (30)

Example. For any c ∈ C22, fc is such that for all x ∈ {0, 1}2:

fc(x1, x2) = c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2 .
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Partial optimality and machine learning – Graphical model inference

Lemma 4. Every PBF has a unique multi-linear polynomial form. More precisely,

∀n ∈ N ∀f : {0, 1}n → R ∃1c ∈ Cnn f = fc . (31)

Example. For n = d = 2 and any f : {0, 1}2 → R, the existence of a c ∈ C22

such that f = fc means

∀x ∈ {0, 1}2 : f(x1, x2) = c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2 .

Explicitly,

f(0, 0) = c∅

f(1, 0) = c∅ + c{1}

f(0, 1) = c∅ + c{2}

f(1, 1) = c∅ + c{1} + c{2} + c{1,2} .

In this example, a suitable c exists and is defined uniquely by f .
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Partial optimality and machine learning – Graphical model inference

Proof. For any J ⊆ {1, . . . , n}, let xJ ∈ {0, 1}n such that for all j ∈ {1, . . . , n}:

xJ
j =

{
1 if j ∈ J

0 otherwise
.

Now,

∀x ∈ {0, 1}n : f(x) =
∑

J⊆{1,...,n}

cJ
∏
j∈J

xj

is written equivalently as

f(x∅) = c∅

∀J ̸= ∅ : f(xJ) = cJ +
∑
J′⊂J

cJ′ .

Thus, c is defined uniquely (by induction over the cardinality of J). □
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Partial optimality and machine learning – Graphical model inference

Definition 7. For any n ∈ N and any d ∈ {0, . . . , n}, let

Fnd := {f : {0, 1}n → R | ∃c ∈ Cnd : f = fc} (32)

and call any f ∈ Fnd an n-variate PBF of degree at most d. In addition, call
any f ∈ Fn2 a quadratic PBF (QPBF).

Remark 3. For any n ∈ N, Fnn is the set of all n-variate PBFs (by Lemma 4).
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Partial optimality and machine learning – Graphical model inference

Definition 8.

▶ For any n ∈ N and any f : {0, 1}n → R, call

min {f(x) | x ∈ {0, 1}n} (33)

the instance of the pseudo-boolean optimization (PBO) problem wrt. f .

▶ For any n ∈ N and any f ∈ Fn2, call

min {f(x) | x ∈ {0, 1}n} (34)

the instance of the quadratic pseudo-boolean optimization (QPBO)
problem wrt. f .

Is QPBO less complex than PBO?
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Partial optimality and machine learning – Graphical model inference

Definition 9. For any n ∈ N and any c ∈ Cnn, define the size of c as

size(c) :=
∑

J⊆{1,...,n}: cJ ̸=0

|J | . (35)
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Partial optimality and machine learning – Graphical model inference

Lemma 5. For any x, y, z ∈ {0, 1}:

z = xy ⇔ xy − 2xz − 2yz + 3z = 0 , (36)

z ̸= xy ⇔ xy − 2xz − 2yz + 3z > 0 . (37)

Proof. By verifying equivalence for all eight cases. □
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Partial optimality and machine learning – Graphical model inference

Algorithm 1 (Boros and Hammer 2001).
Input: c ∈ Cnn

Output: c′ ∈ Cn2

M := 1 + 2
∑

J⊆{1,...,n} |cJ |
m := n
cm := c
while there exists a J ⊆ {1, . . . , n} such that |J | > 2 and cmJ ̸= 0

Choose j, k ∈ J such that j ̸= k
cm+1 := cm

cm+1
{j,k} := cm+1

{j,k} +M

cm+1
{j,m+1} := −2M

cm+1
{k,m+1} := −2M

cm+1
{m+1} := 3M

for all {j, k} ⊆ J ′ ⊆ {1, . . . , n} such that cm+1
J′ ̸= 0

cm+1
J′−{j,k}∪{m+1} := cm+1

J′

cm+1
J′ := 0

m := m+ 1
c′ := cm
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Partial optimality and machine learning – Graphical model inference

Theorem 1.

▶ Algorithm 1 terminates in polynomial time in size(c).

▶ size(c′) is polynomially bounded by size(c).

▶ The multi-linear quadratic form c′ is such that ∀x̂ ∈ Rn:

x̂ ∈ argmin
x∈{0,1}n

fc(x)

⇒ ∃x̂′ ∈ {0, 1}m
(
x̂′
{1,...,n} = x̂{1,...,n} ∧ x̂′ ∈ argmin

x′∈{0,1}m
fc′(x

′)

)
.

(38)
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Partial optimality and machine learning – Graphical model inference

Proof. The algorithm replaces the occurrence of xjxk by xm+1 and adds the
form M(xjxk − 2xjxm+1 − 2xkxm+1 + 3xm+1).

▶ If xm+1 = xjxk,

fm+1(x1, . . . , xm+1) = fm(x1, . . . , xn) ≤ max
x′∈{0,1}n

fm(x′) < M/2 .

▶ If xm+1 ̸= xjxk,

fm+1(x1, . . . , xm+1) ≥ M/2

(by Lemma 5 and by definition of M).

For every iteration m,

|{J ⊆ {1, . . . , n}||J | > 2 ∧ cm+1
J ̸= 0}| < |{J ⊆ {1, . . . , n}||J | > 2 ∧ cmJ ̸= 0}|

which proves the complexity claims. □
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Partial optimality and machine learning – Graphical model inference

Summary:

▶ Every PBF has a unique multi-linear polynomial form.

▶ PBO is polynomially reducible to QPBO.
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Partial optimality and machine learning – Graphical model inference

Definition 10. For any n ∈ N and any d ∈ {0, . . . , n}, let

K+
nd := {(K1,K0) | K1,K0 ⊆ {1, . . . , n} ∧K1 ∩K0 = ∅ ∧ |K1|+ |K0| = d}

J+
nd :=

d⋃
m=0

K+
nm

C+
nd := {c : J+

nd → R | ∀j ∈ J+
nd \ {(∅,∅)} : 0 ≤ cj}

and call any c ∈ C+
nd an n-variate posiform of degree at most d.

Example. For n = d = 2,

J+
22 = { (∅,∅) }

∪ { ({1},∅), (∅, {1}), ({2},∅), (∅, {2}) }
∪ { ({1, 2},∅), ({1}, {2}), ({2}, {1}), (∅, {1, 2}) }
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Partial optimality and machine learning – Graphical model inference

Definition 11. For any n ∈ N, any d ∈ {0, . . . , n} and any c ∈ C+
nd,

fc : {0, 1}n → R such that

∀x ∈ {0, 1}n fc(x) :=
∑

(J1,J0)∈J+
nd

cJ1J0

∏
j∈J1

xj

∏
j′∈J0

(1− x′
j) (39)

is called the PBF defined by c.

Example. For any c ∈ C+
22, fc : {0, 1}2 → R is such that ∀x ∈ {0, 1}2:

f(x) = c∅∅

+ c{1}∅x1 + c∅{1}(1− x1) + c{2}∅x2 + c∅{2}(1− x2)

+ c{1,2}∅x1x2 + c{1}{2}x1(1− x2) + c{2}{1}(1− x1)x2

+ c∅{1,2}(1− x1)(1− x2) .
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Partial optimality and machine learning – Graphical model inference

Definition 12. For any n ∈ N and any f : {0, 1}n → R, the posiform defined by

∀x ∈ {0, 1}n : K1
x := {j ∈ {1, . . . , n}|xj = 1}

K0
x := {j ∈ {1, . . . , n}|xj = 0}

and

J := {(∅,∅)} ∪
⋃

x∈{0,1}n
{(K1

x,K
0
x)}

and c : J → R such that

c∅∅ := min
x∈{0,1}n

f(x)

∀x ∈ {0, 1}n cK1
xK0

x
:= f(x)− c∅∅

is called min-term posiform of f .
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Partial optimality and machine learning – Graphical model inference

Lemma 6. For any n ∈ N and any f : {0, 1}n → R, the min-term posiform c of
f is such that fc = f .

Corollary 2. For any n ∈ N and any f : {0, 1}n → R, there exists a posiform
c ∈ C+

nn such that fc = f .
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Partial optimality and machine learning – Graphical model inference

Proof. Let n ∈ N and f : {0, 1}n → R. Moreover, let c : J → R the min-term
posiform of f .

c is a posiform (by definition).

Let g : {0, 1}n → R be the PBF defined by this posiform.

Then, for any x ∈ {0, 1}n,

(J1, J0) ∈ {(∅,∅), (K1
x,K

0
x)} ⊆ J

are the only elements of J for which

0 ̸=
∏
j∈J1

xj

∏
j′∈J0

(1− x′
j) = 1 .

Thus,

∀x ∈ {0, 1}n g(x) = c∅∅ + cK1
xK0

x

= c∅∅ + f(x)− c∅∅ (by definition of c)

= f(x) .

□
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Partial optimality and machine learning – Graphical model inference

Remark 4. Unlike multi-linear polynomial forms, posiforms of PBFs need not be
unique, e.g., x1 = x1x2 + x1(1− x2).

Definition 13. For any n ∈ N, any f : {0, 1}n → R and any d ∈ {0, . . . , n}, let

C+
nd(f) :=

{
c ∈ C+

nd | fc = f
}

. (40)

Remark 5. For any n ∈ N and any f : {0, 1}n → R, C+
nn(f) contains at least

the min-term posiform of f .
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Partial optimality and machine learning – Graphical model inference

Lemma 7.

∀n ∈ N ∀f : {0, 1}n → R ∀c ∈ C+
nn(f) ∀x ∈ {0, 1}n : c∅∅ ≤ f(x) .

Proof. By definition, we have, for all x ∈ {0, 1}n,

f(x) =
d∑

m=0

∑
(K1,K0)∈K+

nm

cK1K0

∏
j∈K1

xj

∏
j′∈K0

(1− x′
j)

= c∅∅ +

d∑
m=1

∑
(K1,K0)∈K+

nm

cK1K0

∏
j∈K1

xj

∏
j′∈K0

(1− x′
j) ,

and all coefficients cK1K0 in the second sum are non-negative.

Therefore, the second sum is non-negative.

Thus,

∀x ∈ {0, 1}n f(x) ≥ c∅∅ .

□



37/45

Partial optimality and machine learning – Graphical model inference

Definition 14. For any posiform c : J → R, a pair (S, y) such that
S ⊆ {1, . . . , n} and y : S → {0, 1} is called a contractor of c iff

∀(J1, J0) ∈ J : (J1 ∩ S = ∅ ∧ J0 ∩ S = ∅)

∨ (∃j ∈ J1 ∩ S yj = 0)

∨ (∃j ∈ J0 ∩ S yj = 1) . (41)
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Partial optimality and machine learning – Graphical model inference

Theorem 2 (partial optimality). For any n ∈ N, any f : {0, 1}n → R, any
posiform c ∈ C+

nn(f) and any contractor (S, y) of c, there exists a solution x∗ to
the problem min {f(x) | x ∈ {0, 1}n} such that

∀j ∈ S : x∗
j = yj . (42)



39/45

Partial optimality and machine learning – Graphical model inference

Proof. Let σSy : {0, 1}n → {0, 1}n such that ∀x ∈ {0, 1}n ∀j ∈ {1, . . . , n}:

σSy(x)j =

{
yj if j ∈ S

xj otherwise
. (43)

Let J S̄ := {(J1, J0) ∈ J+
nn | J1 ∩ S = J0 ∩ S = ∅} and JS := J \ J S̄ .

Now, ∀x ∈ {0, 1}n:

f(x) =
∑

(J1,J0)∈JS

cJ1J0

∏
j∈J1

xj

∏
j′∈J0

(1− x′
j)︸ ︷︷ ︸

=:fS(x)

+
∑

(J1,J0)∈JS̄

cJ1J0

∏
j∈J1

xj

∏
j′∈J0

(1− x′
j)

︸ ︷︷ ︸
=:f S̄(x)

.

Furthermore, ∀x ∈ {0, 1}n:

fS(σSy(x)) = 0 (by definition)

0 ≤ fS(x) (because (∅,∅) ̸∈ JS)

f S̄(σSy(x)) = f S̄(x) (by definition) .

Adding the lhs. and rhs. shows that σSy is improving for the problem
min {f(x) | x ∈ {0, 1}n}. □
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Summary:

▶ Every PBF has a posiform

▶ The posiform of a PBF need not be unique
▶ For every PBF f and every posiform c of f

▶ c∅∅ is a lower bound on the minimum of f
▶ partial optimality holds at any contractor of c
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For any n ∈ N, consider n-variate quadratic forms, i.e.

▶ any multi-linear polynomial form c ∈ Cn2, and fc, i.e. for all x ∈ {0, 1}n:

fc(x) = c∅ +
∑

j∈{1,...,n}

c{j}xj +
∑

{j,k}∈({1,...,n}
2 )

c{j,k}xjxk

▶ any posiform c′ ∈ C+
n2, and f ′

c, i.e. for all x ∈ {0, 1}n:

f ′
c′(x) = c′∅∅ +

∑
j∈{1,...,n}

(
c′{j}∅xj + c′∅{j}(1− xj)

)
+

∑
{j,k}∈

({1,...,n}
2

) (c′{j,k}∅xjxk + c′{j}{k}xj(1− xk)

+ c′{k}{j}xk(1− xj) + c′∅{j,k}(1− xj)(1− xk)
)
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Lemma 8. For any n ∈ N, any QPBF f : {0, 1}n → R, the c ∈ Cn2 such that
fc = f and any c′ ∈ C+

n2(f):

c∅ = c′∅∅ +
n∑

j=1

c′∅{j} +
∑

{j,k}∈({1,...,n}
2 )

c′∅{j,k}

∀j ∈ {1, . . . , n} : c{j} = c′{j}∅ − c′∅{j} +
∑

k∈{1,...,n}\{j}

(
c′{j}{k} − c′∅{j,k}

)
∀{j, k} ∈

({1,...,n}
2

)
: c{j,k} = c′{j,k}∅ + c′∅{j,k} − c′{j}{k} − c′{k}{j}

Proof. Expansion of the posiform c′ yields a quadratic multi-linear polynomial
form. Comparison with c yields the conditions stated in the Lemma. □
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Definition 15 (Complementation). For any n ∈ N and any QPBF
f : {0, 1}n → R, the real number max {c′∅∅ | c′ ∈ C+

n2(f)} is called the floor
dual of f .

Corollary 3 (of Lemma 8). For any n ∈ N and any QPBF f : {0, 1}n → R, the
floor dual is the value of an optimal solution to the linear program

max
c′:J+

n2→R
c∅ −

n∑
j=1

c′∅{j} −
∑

{j,k}∈({1,...,n}
2 )

c′∅{j,k}

subject to ∀j ∈ {1, . . . , n} : c{j} = c′{j}∅ − c′∅{j} +
∑

k∈{1,...,n}−{j}

(
c′{j}{k} − c′∅{j,k}

)
∀{j, k} ∈

({1,...,n}
2

)
: c{j,k} = c′{j,k}∅ + c′∅{j,k} − c′{j}{k} − c′{k}{j}

∀J ∈ J+
n2 − {(∅,∅)} : 0 ≤ c′J .
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Summary:

▶ For any PBF, a quadratic posiform with maximum floor dual bound c∅∅
can be found by solving a linear program.


