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Classification of digital images

Problem. Given a finite set V of pixels, the set X = RY of images, a finite
image collection z : S — X and binary decisions y : S — {0, 1}, find a
function g: X — {0,1} to make such a decision for any image = € X.

Example. Learning to identify precisely the images of the hand-written digit 7.
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Logistic regression

To begin with, we consider linear functions. More specifically, we consider
© =R and f: © — R¥ such that

VOeOVieX: fo(i)=(0,3)=> O,y (1)

veV

Example.
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Logistic regression
We introduce a probabilistic model:

» For any sample s € S, let X5 be a random variable whose value is a vector
zs € RY, the feature vector of s

» For any sample s € S, let Y be a random variable whose value is a binary
number ys € {0,1}, the label of s

» For any v € V, let ©, be a random variable whose value is a real number
0, € R, a parameter of the linear function we seek to learn

We assume that the joint probability factorizes according to:

P(X,Y,0) = [T(P(Y: | X.,©)P(X.)) ] P(©.) (2)

sesS veV
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Logistic regression

We attempt to learn parameters by maximizing the conditional probability
P(X,Y,0)
P(X,Y)
_ P(Y | X,0) P(X) P(©)
B P(X,Y)
x P(Y | X,0)P(0O)
=[[P0:1Xs,0) ] Po.) .

seSs veV

PO]X,Y) =

We attempt to infer labels by maximizing the conditional probability

P(Y|X,0) =[] P(v:| X,,0) .
sesS
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Logistic regression

» Sigmoid distribution

1

veeS:  prx.e() = TRen

Py, x.,0(1)
o
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Logistic regression

» Normal distribution with o € R™:

pe, (0v)

(3)

YoeV: po, (6,) = ﬁe—eg/zﬂ
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0.2 |
0 ‘ ‘ ‘ ‘ ‘ i
-6 -4 =2 0 2 4

6/26



Logistic regression

Lemma. Estimating maximally probable parameters 6, given attributes x and
labels y, i.e.,

argmax  pe|x,y(0,z,y)
HER™

is equivalent to the optimization problem

min  AR(0) + Y L(fo(z), ys) (4)

0cO
seS

with L, R and X such that

vre RVj € {0,1}: L(r,9) = —gr +log (1 +2") (5)
voeo: R =0 (6)

__loge
A= 557 - (M)

It is called the l2-regularized logistic regression problem with respect to z, y
and o.
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Logistic regression

Proof. Firstly,

argmax  pe|x,v(0,,y)
geR™

= argmax pr\x& (ys, Ts, 0 HPG)

oeR™ sesS veV
= argmax E log py, | x,,0(¥s, Ts, 0 +§ log pe, (
ge]R‘nl
seS veV

Secondly,
log py, |x,,0(Ys, s, 0)
Ys IngYS\XS,G(LxM 9) + (1 - yS) IngYs\Xs,6(07 Ts,y 9)

Py, x,,0(1,2s,0)
Py, x,,0(0,2s,0)

ys log + log py, | x,,0(0,zs,0)

Thus, with (3) and (4):

argmin Z (—ys<97$s> + log (1 + 2(0,:::5)))

gecR™ ses

log e

2 16113

(9)

(10)
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Logistic regression

Lemma. The objective function

@(0) = AR(O) + > L(fo(ws),vs)

seS

of the l2-regularized logistic regression problem is convex.

(11)
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Logistic regression

The l2-regularized logistic regression problem can be solved, e.g., by the
steepest descent algorithm with a tolerance parameter ¢ € R :

Algorithm. Steepest descent with line search

0:=0
repeat
d:= V()
7 = argmin, ., (0 —n'd)  (line search)
0:=60—nd
if [l < e
return 6
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Logistic regression

Lemma: Estimating maximally probable labels 3, given attributes =’ and
parameters 0, i.e.,

argmax  py|x.e(y,z’,0) (12)
ye{0,1}5

is equivalent to the inference problem

min ZL(fe(xs),y;) . (13)

’ S
y'€{0,1}% 7%

It has the solution

1 if ! 0
Vse S : ys= I fg(x?) ~ . (14)
0 otherwise
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Logistic regression

Proof. Firstly,

!
argmax  py|x,e(y,,0)
ye{0,1}5’

/
= argmax H pys|xs,®(y579€sa0)
’
ye{0,1}5" 45t

= argmax Z IngYS|XS,®(yS>‘T/579)
ye{0,1}5 g

1,2.,0
= argmax Z (y5 log pYSlL(,’) + log py, | x.,0(0, 7%, 9))
yG{O,l}Sl ses pYS|XS,®(07xsve)

= argmin Z (7ysfg (x}) + log (1 4 ofe (IL)))

yG{O,l}S/ seS’

= argmin ZL(f9($;)7ys) .

ye{o’l}sl seS’

Secondly,
min Z (—ysfg(x;) + log (1 + 2f9<””/5))) = max  ysfo(zh) .
ye{o,1}5’ acs ey ys€{0,1}
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Deep Learning

Notation. Let G = (V, E) a digraph.
» Forany v eV, let

P,={ueV|(u,v) € E} the set of parents of v (15)
Co={weV]|(@w)eE} the set of children of v . (16)

» For any u,v € V, let P(u,v) denote the set of all uv-paths. (Any path is
a subgraph. For any node u, the uu-path ({u}, ) exists.)

Let G be acyclic.
» Foranyv eV, let

Ay ={u eV |Pu,v) #0}\ {v} the set of ancestors of v (17)
D, ={w eV |P(v,w) #0}\ {v} the set of descendants of v .(18)
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Deep Learning

Definition. A tuple (V,D, D’ E, 0, {g,: R™ — R}ve(pupi\v,6co) is called
a compute graph, iff the following conditions hold:

> G=(VUDUD' E) is an acyclic digraph

> VoeV:P, =0

> VoeD :C,=0

> VoeD:P,#Qand C, £0

Definition. For any compute graph
(V,D,D',E,0,{gvo: R™ — R},c(pupn\v,eco), any v € VUDUD’ and
any 6 € ©, let ape: RV — R such that for all £ € RV:

oo (2) = To ifveV (19)
R guo(ap,s(Z)) otherwise

We call ay9(Z) the activation of v for input & and parameters 0. For any
0O let fo: RV — R such that fs = aprg. We call f5(2) the output of
the compute graph for input & and parameters 6.
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Deep Learning

Example. Consider the compute graph below with V' = {vo, v1,v2},
D = {vs3} and D" = {v4}.

V2

v O
Vo O/Us

Moreover, consider © = {6, 61} and

Vg

> gui0: ROV 5 R such that go,0(z) = 2oy + foTo,
> Gu6: R{v2:v3} 5 R such that Gug0(T) = Ty + xﬁé

This defines the function fo () = Ty, + (Tvy + Oov, ).
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Deep Learning

In the following:

> We assume © = R’ for some set J.

» We consider compute graphs with |[D’| =1, i.e. fo(2) € R for every
& eRY.
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Deep Learning

Problem: The [2-regularized non-linear logistic regression problem with
respect to labeled data 7' = (S,RY, z, %) and o € RT is to solve

argmin " (~yefolw) +log (1+27@))) + SEL o> . (20)

[23:34 ses

Remark.

» (20) is a generalization of linear logistic regression.
» (20) can be non-convex for fg non-linear in 6.

» A local minimum 6 € R’ can be found by means of a steepest descent
algorithm.

» In order to compute Vg fo, we describe the backward propagation
algorithm.
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Deep Learning
Lemma. Let j € J. Foranyv € V: aa"" =0. Foranyv € (DUD')\V:

8@1;0 8gu9 Auv (21)

90, 90,

u€ (A, U{vH\V

with

9gurg

Ay = LA 22

v > Il 5o, (22)
(VI E"eP(u,v) (u' v')eE’

Remark. For any node u: Ay, = 1. For any u,v with P(u,v) = 0: Ay, =0.
Proof (idea).

aavG o ag'UG ava aaue
20, + Z Do 00, (23)

agve 891}0 6911,9 agve 8gu9 8051#9
- Z 8au@ 80J +u§; u’eZP (90éu9 3au/9 (99]

= repeated appllcation (23)

_ Ogue 09.0
o Z 8(% Z H 80@/9

u€(AyU{v}H)\V (V/,E")eP(u,v) (u/,v")EE’
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Deep Learning

Lemma (backward propagation). For all nodes u # w such that P(u,w) # 0:

Ayw = Z 691}6 JANE (24)

da
veCy u6

Proof.

69 ’
Auw = Z H ﬁ
(VI E"EP(u,w) (u' v')eE!
891}’9
Z Z H aau’e

veCy (V" E")EP(v,w) (v ,v)EE"U{(u,v)}

agvg 891}'6

veCy 80[1},9 (V" E"MYeP(vw) (u 0! )EE! 3au/9
= Y geea
8au6

vECy,
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Deep Learning

The backward propagation algorithm computes A, for one node w and all
nodes w. It is defined wrt. an arbitrary partial order <¢ of the nodes such that

VueVUD YveCy: v<cu. (25)

Input:
Compute graph (V, D, D', E,0,{gvo: R™ = R}ye(pupyvioco)
Node w e VUDUD'

for u ordered by <¢ (25)
if u=w
Apw =1
else if P(u,w) =10
Ayw :=0
else
Ay 1= ZvECu ggiz% Avw (24)
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Pixel classification

Classification y: V' — {0, 1}
RN P
e (NS M A XS IR
«.v?latgb‘.»\“‘

Digital image! f: V = C

1By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics. 21/26



Pixel classification

Definition. Let G = (V, E) a pixel grid graph and g: V — C a digital image.
Let m € N and X = R™ (a feature space). For any pixel v € V, let 29 e x
(a feature vector associated with the pixel v of the digital image g). Let

f:+ X — R (e.g. a linear function learned by logistic regression).

The instance of the trivial pixel classification problem has the form

min 3 (— /() v (26)

%
ye{0,1} eV

With the pixel grid graph (V, E) and ¢’: E — RJ, the instance of the smooth
pixel classification problem has the form

min > (—f@) g+ D oy v — Yol (27)
y€{0,1} veV {v,w}eE
e (y)

Remark. Motivation: Prior knowledge that decisions at neighboring pixels v, w
are more likely to be equal (y, = vy ) than unequal (Yo # Yuw).
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Pixel classification

A naive algorithm for the smooth pixel classification problem is local search
with a transformation T,: {0,1}" — {0,1}" that changes the decision for a
single pixel, i.e., for any y: V — {0,1} and any v,w € V:

1l—yw ifw=w
Ty w) =
()(w) {yw otherwise

Algorithm.
Initially, y: V — {0,1} and W =V
while W #£ ()
W' =10
for each v € W
if o(Tu(y)) — ¢(y) <0

y:=Tu(y)
W' =W u{weV|{v,w} € E}
wW.=w’
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Pixel classification

Remark.
» On the one hand, this algorithm is easy to implement and has
straight-forward generalizations, e.g., to the case of more than two classes.

» On the other hand, it does not necessarily solve smooth pixel classification
with two classes to optimality.

» Next, we will reduce the smooth pixel classification problem with two
classes to the well-known minimum st-cut problem that can be solved
exactly and efficiently.
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Pixel classification

Definition. A 5-tuple N = (V, E, s,t,~) is called a network iff (V, E) is a
directed graph and s € V and t € V and s # ¢t and v : E — R}. The nodes s
and t are called the source and the sink of IV, respectively. For any edge

e € E, v, is called the capacity of e in N.

Definition. The instance of the minimum st-cut problem wrt. a network
N = (V,E,s,t,v) has the form

min vw (1 — Zv) Tw 28
L, WZg:Ev ( ) (28)
subject to z, =0 (29)

Example.

S S S

t t
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Pixel classification

Lemma. The smooth pixel classification problem is reducible to the minimum
st-cut problem.

Proof (sketch). For any instance of the smooth pixel classification problem,

min eyt Y. uwy G —yw)+ A —w)ye) ,  (31)
ye{o 1}V U= {vw}eE

e (y)

define the instance of the induced minimum st-cut problem in terms of the
network (V', E’, s,t,7) such that

V' =V U{st} (32)
E' ={(s,v) € V?| ¢, >0}U{(v,t) € V?| ¢, <0}
U{(v,w) € V? | {v,w} € E} (33)

and v: E' — Ry such that

Y(s,v) € E: V(s,w) = Co (34)
V(v,t) EE't Yupp = —Co (35)
V{’U, w} cE: Yw,w) = Y(w,w) = Cf{v,w} . (36)
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