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Ordering
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» This part of the course is about the problem of learning to order a finite set.

2/20



Ordering

Contents.
» This part of the course is about the problem of learning to order a finite set.

» This problem is introduced as an unsupervised learning problem
w.r.t. constrained data.

2/20



Ordering

We consider any finite, non-empty set A that we seek to order.
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Ordering

We consider any finite, non-empty set A that we seek to order.

Definition. A strict order on A is a binary relation < C A x A that satisfies the
following conditions:

VaeA: —-a<a (1)
V{a,b}e(‘;): a<b xor b<a 2
V{a,b,c} € (4): a<b A b<ec = a<c (3)
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Ordering

Lemma. The strict orders on A are characterized by the bijections
a:{0,...,]A| — 1} — A. For any such bijection, consider the order <, such
that

Va,b€ A: a<b & a '(a)<a '(b) . (4)
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Ordering

Lemma. The strict orders on A are characterized by the bijections

a:{0,...,]A| — 1} — A. For any such bijection, consider the order <, such
that
Va,b€ A: a<b & a '(a)<a '(b) . @)
Lemma. The strict orders on A are characterized by those
y:{(a,0) € Ax Ala#b}—{0,1} (5)
that satisfy the following conditions:
Vaec AVbe A\{a}: War+ypa=1 (6)
Vae€ AVbe A\{a} Vee A\ {a,b}:  Yabr+ yYoc — 1 < Yac (7)
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Ordering

Constrained Data

We reduce the problem of learning and inferring orders to the problem of
learning and inferring decisions, by defining constrained data (S, X, z,Y") with

S—={(ab)€AxAlastb) 8)
y:{ye{o,l}s]\meAVbeA\{a}: Yab + Upa = 1
Va € AVbe A\ {a} Ve e A\ {a,b}:

Yadb + Yvbe — 1 S yac} (9)
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Ordering

Familiy of functions

» We consider a finite, non-empty set V/, called a set of attributes, and the
attribute space X =R"
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Ordering

Familiy of functions

» We consider a finite, non-empty set V/, called a set of attributes, and the
attribute space X =R"

» We consider linear functions. Specifically, we consider © = RY and
f:© — R¥ such that

VOeOVieR":  fo(d)=> 60,8, =(0,3) . (10)

veV
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Ordering

Xs

0, O —CE Ys

veV seS

'
Oz
Random Variables

» For any (a,b) =s € S = E, let X5 be a random variable whose value is a
vector z; € RV, the attribute vector of s.
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Ordering

Xs

seS

0, O —CE Ys

veV

'
Oz
Random Variables

For any (a,b) =s € S = E, let X, be a random variable whose value is a
vector z; € RV, the attribute vector of s.

For any (a,b) = s € S, let Y be a random variable whose value is a binary
number ys € {0, 1}, called the decision placing a before b.

For any v € V, let ©, be a random variable whose value is a real number
0, € R, a parameter of the function we seek to learn.

Let Z be a random variable whose value is a subset Z C {0, 1} called the
set of feasible decisions. For ordering, we are interested in Z = )/, the set
of characteristic functions of strict orders on A.
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Ordering

Xs

0, O —CE Ys

veV seS

'
Oz

Factorization

P(X,Y,Z,0)=P(Z|Y) [[P(Y:| X:,0) [[P(©.) []P(Xs)

seS veVv

seS
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Ordering

Factorization

» Supervised learning:

PO XY, Z)
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Ordering

Factorization

» Supervised learning:

P(X,Y,Z,0)

P(X,Y,Z2)

P(Z|Y)P(Y|X,0)P
P(Z| X,Y)P(X,Y)

_P(ZIY) P(Y | X,0) P(X) P(©)

P(Z]Y)P(X,Y)

_ PV |X,0)P(X)P(O)
P(X,Y)

x P(Y | X,0) P(©)

_HPY|X e) [ p©.

veV

PO|X,Y,Z) =
(X)P(©)
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Ordering

Factorization

» Inference:

P(Y | X, Z2,6)
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Ordering

Factorization
» Inference:
P(X,Y,Z,0)
WIX20="px 7 6)
_P(Z]Y)P(Y | X,0)P(X)P(O)
P(X, Z, @)

x P(Z|Y)P(Y | X,0)

= P(z|Y)[] P(Y: | X..0)
seS
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Ordering

Distributions

» Sigmoid distribution

1

T 142 Je(ws) (1)

Vse S: Py, xs,0(1)

1, ]
=
Q
g 0.5+ B
5
ISH

07 | | | | | |
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Distributions

Ordering

» Normal distribution with ¢ € R™:

pe, (0v)

(12)

1 —62 /202
YvoeV: » (0 ——e v
pe, (6v) P
0.4 R
0.2+ N
U ! ! ! ! il
—6 —4 —2 0 2 4
0
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Ordering

Distributions

» Uniform distribution on a subset

1 ifyez

vZ C {0,1}° vy € {0,1}° pziy(2,y) .
0 otherwise

Note that pzy (), y) is non-zero iff the labeling y: S — {0,1} defines an
order on A.
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Ordering

Lemma. Estimating maximally probable parameters 6, given attributes x and
decisions y, i.e.,

argmax pe|x,v,z(0,z,y,))
0erRY

is an [2-regularized logistic regression problem.
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Ordering

Lemma. Estimating maximally probable parameters 6, given attributes x and
decisions y, i.e.,

argmax pe|x,v,z(0,z,y,))
0erRY

is an [2-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax pe|x.,v,z(0,7,y,Y)

6eRrRY
. @ 1
= argmin Z (fys fo(zs) + log (1 4 2fe( 5>>) + Og2e||9||§ .
0eRV  Cs 20
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Ordering

Lemma. Estimating maximally probable decisions y, given attributes z, given

the set of feasible decisions ), and given parameters 0, i.e.,

argmax  py|x,ze(y,z,V,0)
y€e{0,1}5

assumes the form of the linear ordering problem:
argmin (—(0,x5)) ys
y: S—{0,1} ;
subject to Va€ AVbe A\{a}: Yab+Ypa =1
Va € AVbe A\ {a} Vc € A\ {a,b}:
Yab + Yve — 1 < Yac

(13)

(14)

(15)

(16)

15/20



Ordering

Lemma. Estimating maximally probable decisions y, given attributes z, given
the set of feasible decisions ), and given parameters 0, i.e.,

argmax pwx,z,e(%%% 0) (13)
ye{0,1}5

assumes the form of the linear ordering problem:

orgmin ;(49,%))% (14)

subject to Va€ AVbe A\{a}: Yab+Ypa =1 (15)
Va € AVbe A\ {a} Vc € A\ {a,b}:

Yab + Yoo — 1 < Yac (16)

Theorem. The linear ordering problem is NP-hard.

The linear ordering problem has been studied intensively. A comprehensive survey
is by Marti and Reinelt (2011). Pioneering research is by Grotschel (1984).
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We define two local search algorithms for the linear ordering problem.
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We define two local search algorithms for the linear ordering problem.

For simplicity, we define ¢ : S — R such that
VseS: co=—(0,zs) (17)

and write the (linear) cost function ¢ : {0,1}° — R such that

Yy e {0,1}%: oy) = coys (18)

seS
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Ordering

Greedy transposition algorithm:

» The greedy transposition algorithm starts from any initial strict order.
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elements

17/20



Ordering

Greedy transposition algorithm:
» The greedy transposition algorithm starts from any initial strict order.

» It searches for strict orders with lower objective value by swapping pairs of
elements

Definition. For any bijection «: {0,...,|A] — 1} — A and any
g,k €40,...,|Al — 1}, let transpose;, [a] the bijection obtained from « by
swapping a; and ay, i.e.

(673 if :j
Vie{0,...,|A[—1}: transpose[a](l) = o; ifl=k . (19)

«; otherwise
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Ordering

o' = greedy-transposition(a)

choose (j, k) € argmin ¢(yrasPoseini @y _ ()
0<j/ <k’ <|A]|
if @(ytranspose‘jk[a]) _ (p(ya) <0
o := greedy-transposition(transpose ; [a])
else

o =«
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Ordering

Greedy transposition using the technique of Kernighan and Lin (1970)

o’ = greedy-transposition-kl (a)

0

a’ =
50 :=0

Jo :={0,...,|A| — 1}
t:=0

repeat

choose (j, k) € argmin ¢(y
{G" k) eTE i <k}
= transpose;, [a¢]
t41 t
Sep1i= ey ) —e(y* ) <0
Jeq1 = Je \ {4, k}

attl:

t:=t4+1
until |J¢| < 2
+
t := min argmin >
t'€{0,...,|A|} T=0
i
if > 6 <0
=0 B
o = greedy-transposition-kl(at)
else
o =«

transposej,k/ [a

t
h - e

(build sequence of swaps)

(move a; and ay, only once)

(choose sub-sequence)

(recurse)

(terminate)
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Ordering

Summary.

» Learning and inferring orders on a finite set A is an unsupervised learning
problem w.r.t. constrained data whose feasible labelings characterize the
strict orders on A.
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Ordering

Summary.

» Learning and inferring orders on a finite set A is an unsupervised learning
problem w.r.t. constrained data whose feasible labelings characterize the
strict orders on A.

» The supervised learning problem can assume the form of l>-regularized
logistic regression where samples are pairs (a,b) € A2 such that a # b and
decisions indicate whether a < b.

» The inference problem assumes the form of the NP-hard linear ordering
problem

» Local search algorithms for tackling this problem are greedy transposition
and greedy transposition using the technique of Kernighan and Lin.
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