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Deciding with Linear Functions

Contents. This part of the course is about a special case of supervised
learning: the supervised learning of linear functions by logistic regression.

» We state the problem by defining labeled data, the family of functions
and a probability distribution whose maximization motivates a
regularizer and a loss function

» We show: This supervised learning problem is convex and can thus be
solved by means of the steepest descent algorithm.
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Deciding with Linear Functions

We consider real attributes. More specifically, we consider some finite set
V # ) and labeled data T = (S, X, z,y) with X =RV

Hence, x: S — RY and y: S — {0,1}. We consider linear functions.
More specifically, we consider © = RY and f : © — R¥X such that

VOeOVieX: fo(i)=(0,2)=> 0,2, (1)
veV
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Deciding with Linear Functions

e’u O 'O Ys

veV se S

Random Variables

» For any sample s € S, let X be a random variable whose value is a
vector z, € RV, the attribute vector of s

» For any sample s € S, let Y, be a random variable whose value is a
binary number y, € {0,1}, the label of s

» For any v € V, let ©, be a random variable whose value is a real
number 6, € R, a parameter of the linear function we seek to learn
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Deciding with Linear Functions

veV

e’u O 'O Ys

Factorization

P(X,Y,0) = [[(P(Y. | X,,©)P

ses

) I P,

veV
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Deciding with Linear Functions

Oy O 'O Y
veV seS
Factorization
_ PX,Y,0)
PO =0y
_PY|X,0)P(X)P(©)
B P(X,Y)

x P(Y | X,0) P(©)
=[[Pe.1x..0) [] P©.)

seS veV
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Deciding with Linear Functions

Distributions

» Logistic distribution

1
VseS: Py, x..0(1) = [SCS) (3)
1 [ |
=
@
g 0.5 -
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f@(l's)
» Normal distribution with ¢ € R*:
1 2 2
Yo eV : (0,) = ——e /20 4
po.(6,) =~ )
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Deciding with Linear Functions

Lemma. Estimating maximally probable parameters 6, given attributes x
and labels y, i.e.,

argmax p@|X,Y(67 €, y)
9ER™

is equivalent ot the supervised learning problem

) 1
with L, R and )\ such that
VreRVge{0,1}: L(r,j) = —gr+log(l1+2") (6)
weo: R =0l (7)
loge
A= 952 - (8)

It is called the l5-regularized logistic regression problem with respect to
z, y and o.
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Deciding with Linear Functions
Proof. Firstly,

argmax p@|X,Y(9a$>y)

= argiax H Py,|1Xs,0© ysa xbv H p@
gerR™ sesS veV

=argmax  » _logpy,|x, s 7s,0) + > _logpe, ()  (9)
geRrR™ seS veV

Secondly,

log py, | x,,0(Ys, Ts,0)
Ys long3|X3,®(17xS79) + (1 - ys) long3|X3,@(O7xS70)

st|XS,®(]—7mSve)
pY5|X5,@(O7 Tsy 9)

= yslog +logpy,|x,,0(0,z,0) (10)

Thus, with (3) and (4):

1
argmin > (0, 2,) +1log (1420 ) ) + 225103 (11)
oeRr™ seS
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Deciding with Linear Functions

Lemma. The objective function

w(0) = AR(6 |5|ZL (folxs), ys) (12)

seS

of the ls-regularized logistic regression problem is convex.
Proof. Exercise!

The problem can be solved by the steepest descent algorithm with a
tolerance parameter € € Ry :

0:=0
repeat
d = Ve(0)
n = argmin, g p(0 —n'd) (line search)
6:—0—nd
if [|d]] <e

return 0
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Deciding with Linear Functions

Lemma: Estimating maximally probable labels y, given attributes 2’ and

parameters 6, i.e.,

argmax pY|X,®(ya )
y€{0,1}%

is equivalent to the inference problem

min ZL(fH(xs)vy;) :

ye{01)s &

It has the solution

1 if !
Vses : go=q o) >0
0 otherwise

(13)

(14)

(15)
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Deciding with Linear Functions
Proof. Firstly,

argmax py|x.e(y,z’,0)
ye{0,1}5’

/
= argmax H pYS‘XS7®(ysvl's,9)
ye{0,1}5"  seg

= argmax Z longs|Xs,®(ysa I;a 0)
ye{0,1}’ seS’

1,27,0
= argmax Z (yslogpysxs,@( : )+10gpyg|xs,@(0,xs,0)>
ye{0,1}5" g Py, x.,0(0,2%,0)

= argmin Z (*ysfe(fl?;) + log (1 + gfe(z;)))

ye{0,1}5"  sco

= argmin Z L(fe(JU;)aQS) .

ye{0,1}5’ ses’

Secondly,
min (—ysfe x%) + log (1 + 2f9(’“';))) = max ysfo(zh) .
ye{0,1}5 9625 (=) gezs ys€{0,1} )
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Deciding with Linear Functions

Summary.

» The l5-regularized logistic regression problem is a supervised learning
problem w.r.t. the family of linear functions.

» It is motivated by a Bayesian statistical model with the logistic
distribution as the likelihood as the normal distribution as the prior.

» |t is a convex optimization problem that can be solved, e.g., by the
steepest descent algorithm.
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